Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Infrared quantum cutting of ErP5O14 noncrystalline glass

Chen Xiao-Bo Yang Guo-Jian Li Song Yang Xiao-Dong Liu Da-He Chen Ying Ding Feng-Lian Wu Zheng-Long

Citation:

Infrared quantum cutting of ErP5O14 noncrystalline glass

Chen Xiao-Bo, Yang Guo-Jian, Li Song, Yang Xiao-Dong, Liu Da-He, Chen Ying, Ding Feng-Lian, Wu Zheng-Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The infrared quantum cutting phenomena, which is an international hot research field, of Er1.0P5O14 noncrystalline glass are studied by the present paper for the first time. The 1537.0nm infrared fluorescence of Er1.0P5O14 noncrystalline glass is confirmed to be the multi-photon quantum cutting fluorescence by computation and comparison between absorption and excitation spectra. It is found that the 4I13/2→4I15/2 quantum cutting fluorescence is very strong, induced by the excited 2H11/2, 4G11/2, and 4G9/2 energy levels. Its mechanism is thoroughly analyzed based on the calculation of spontaneous emission rates, nonradiative multiphonon relaxation rates and energy transfer rates. It is found the strong downconversion energy transfers {2H11/2→4I9/2,4I15/2→4I13/2},{4G11/2→4I13/2, 4I15/2→2H11/2},{4G9/2→4F7/2,4I15/2→4I13/2} 和 {4G9/2→4I13/2, 4I15/2→2H11/2} are responsible for the strong infrared three-photon and four-photon quantum cutting fluorescence of Er1.0P5O14 noncrystalline glass. The present research is significant for enhancing solar cell efficiency.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10674019) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 212-105560GK).
    [1]

    Yang G Z, National Natural Science Foundation of China 1995 Optical Physics (Beijing: Science Press)(in Chinese)[杨国桢, 国家自然科学基金委员会 1995 光物理科学 (北京: 科学出版社)]

    [2]

    Wegh R T, Donker H, Oskam K D, Meijerink A 1999 Science 283 663

    [3]

    Vergeer P, Vlugt T J H, KoxMH F, den HertogMI, van der Eerden J P J M, Meijerink A 2005 Phys. Rev. B 71 014119

    [4]

    Bitnar B 2003 Semiconduct. Sci. Technol. 18 S221

    [5]

    Van der Ende B M, Aarts L, Meijerink A 2009 Phys. Chem. Chem. Phys. 11 11081

    [6]

    Reisfeld R 1977 Lasers and Excited States of Rare-Earth (New York: Springer-Verlag, Berlin Heidelberg)

    [7]

    Zhou J J, Teng Y, Ye S, Xu X Q, Qiu J R 2010 Optics Express 18 21663

    [8]

    Chen D Q,Wang Y S, Yu Y L, Huang P,Weng F Y 2008 Opt. Lett. 33 1884

    [9]

    Richards B S 2006 Solar Energy Materials & Solar Cells 90 1189

    [10]

    Eliseeva S V, Bunzli J C G 2010 Chem. Soc. Rev. 39 189

    [11]

    Danielmeyer H G, Weber H P 1972 IEEE J. Quant. Elect. 8 805

    [12]

    Xu X R, ShuMZ 2003 Science of Luminescence and Luminescent Material (Beijing: The Publish Center of Material Science and Engineering)(in Chinese)[徐叙瑢, 苏勉曾 2003 发光学与发光材料 (北京:材料科学与工程出版中心)]

    [13]

    Carnall W T, Fieldd R, Rajnank K T 1968 J. Chem. Phys. 49 4424

    [14]

    Zhang Q Y, Huang X Y 2010 Prog. Mater. Sci. 55 353

    [15]

    Chen J D, Guo H, Li Z Q, Zhang H, Zhuang Y X 2010 Opt. Mater. 32 998

    [16]

    Song Z F, Lian S R, Hua D H, Wang S K 1982 Acta Phys. Sin. 31 772 (in Chinese)[宋增福, 连绍仁, 王淑坤 1982 物理学报 31 772]

    [17]

    Chen Y, Chen X B, Zhang H M, Xu X L,Wang C 2011 Acta Phys. Sin. 60 077802 [陈英, 陈晓波, 张会敏, 徐晓灵, 王策 2011 物理学报 60 已受稿]

    [18]

    Chen X B Wang C, Gregory J S, Naruhito S, Kang D G, Masaaki O, Yang G J, Peng F L 2009 Chin. Phys. B 18 5523

    [19]

    Duan X J, Tan Z X, Lan X F, Huang Y S, Guo S L, Yang D W, Tang X Z, Wang N Y 2010 Acta Phys. Sin. 59 3150 [王乃彦, 段晓礁, 潭志新 2010 物理学报 59 3150]

    [20]

    Wei X T, Zhao J B, Chen Y H, Yin M, Li Y 2010 Chin. Phys. B 19 077804

    [21]

    Chen X B, Lu J, Zhang Y Z, Xu X L, Feng B H,Wang C, Gregory J S, Yang G J 2010 Chin. Phys. B 19 097804

    [22]

    Chen Z J, Wang S F, Wang F, Huang Z W, Gong Q H, Zhang Z J, Chen Y W, Chen H Y 1999 Acta Phys. Sin. 48 477 [陈志坚, 王树峰, 王峰, 黄植文, 陈慧英, 龚旗煌, 张志杰, 陈义旺 1999 物理学报 48 477]

    [23]

    Forster T 1948 Ann. Phys. 2 55

    [24]

    Kushida T 1973 J. Phys. Soc. Japan 34 1318

    [25]

    Zhao Z X, Liu F S, Han R S 1979 Acta Phys. Sin. 28 222 [赵忠贤, 刘福绥, 韩汝珊 1979 物理学报 28 222]

  • [1]

    Yang G Z, National Natural Science Foundation of China 1995 Optical Physics (Beijing: Science Press)(in Chinese)[杨国桢, 国家自然科学基金委员会 1995 光物理科学 (北京: 科学出版社)]

    [2]

    Wegh R T, Donker H, Oskam K D, Meijerink A 1999 Science 283 663

    [3]

    Vergeer P, Vlugt T J H, KoxMH F, den HertogMI, van der Eerden J P J M, Meijerink A 2005 Phys. Rev. B 71 014119

    [4]

    Bitnar B 2003 Semiconduct. Sci. Technol. 18 S221

    [5]

    Van der Ende B M, Aarts L, Meijerink A 2009 Phys. Chem. Chem. Phys. 11 11081

    [6]

    Reisfeld R 1977 Lasers and Excited States of Rare-Earth (New York: Springer-Verlag, Berlin Heidelberg)

    [7]

    Zhou J J, Teng Y, Ye S, Xu X Q, Qiu J R 2010 Optics Express 18 21663

    [8]

    Chen D Q,Wang Y S, Yu Y L, Huang P,Weng F Y 2008 Opt. Lett. 33 1884

    [9]

    Richards B S 2006 Solar Energy Materials & Solar Cells 90 1189

    [10]

    Eliseeva S V, Bunzli J C G 2010 Chem. Soc. Rev. 39 189

    [11]

    Danielmeyer H G, Weber H P 1972 IEEE J. Quant. Elect. 8 805

    [12]

    Xu X R, ShuMZ 2003 Science of Luminescence and Luminescent Material (Beijing: The Publish Center of Material Science and Engineering)(in Chinese)[徐叙瑢, 苏勉曾 2003 发光学与发光材料 (北京:材料科学与工程出版中心)]

    [13]

    Carnall W T, Fieldd R, Rajnank K T 1968 J. Chem. Phys. 49 4424

    [14]

    Zhang Q Y, Huang X Y 2010 Prog. Mater. Sci. 55 353

    [15]

    Chen J D, Guo H, Li Z Q, Zhang H, Zhuang Y X 2010 Opt. Mater. 32 998

    [16]

    Song Z F, Lian S R, Hua D H, Wang S K 1982 Acta Phys. Sin. 31 772 (in Chinese)[宋增福, 连绍仁, 王淑坤 1982 物理学报 31 772]

    [17]

    Chen Y, Chen X B, Zhang H M, Xu X L,Wang C 2011 Acta Phys. Sin. 60 077802 [陈英, 陈晓波, 张会敏, 徐晓灵, 王策 2011 物理学报 60 已受稿]

    [18]

    Chen X B Wang C, Gregory J S, Naruhito S, Kang D G, Masaaki O, Yang G J, Peng F L 2009 Chin. Phys. B 18 5523

    [19]

    Duan X J, Tan Z X, Lan X F, Huang Y S, Guo S L, Yang D W, Tang X Z, Wang N Y 2010 Acta Phys. Sin. 59 3150 [王乃彦, 段晓礁, 潭志新 2010 物理学报 59 3150]

    [20]

    Wei X T, Zhao J B, Chen Y H, Yin M, Li Y 2010 Chin. Phys. B 19 077804

    [21]

    Chen X B, Lu J, Zhang Y Z, Xu X L, Feng B H,Wang C, Gregory J S, Yang G J 2010 Chin. Phys. B 19 097804

    [22]

    Chen Z J, Wang S F, Wang F, Huang Z W, Gong Q H, Zhang Z J, Chen Y W, Chen H Y 1999 Acta Phys. Sin. 48 477 [陈志坚, 王树峰, 王峰, 黄植文, 陈慧英, 龚旗煌, 张志杰, 陈义旺 1999 物理学报 48 477]

    [23]

    Forster T 1948 Ann. Phys. 2 55

    [24]

    Kushida T 1973 J. Phys. Soc. Japan 34 1318

    [25]

    Zhao Z X, Liu F S, Han R S 1979 Acta Phys. Sin. 28 222 [赵忠贤, 刘福绥, 韩汝珊 1979 物理学报 28 222]

  • [1] Liu Heng, Li Ye, Du Meng-Chao, Qiu Peng, He Ying-Feng, Song Yi-Meng, Wei Hui-Yun, Zhu Xiao-Li, Tian Feng, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells. Acta Physica Sinica, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [2] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [3] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [4] Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui. Research progress of solution processed all-inorganic perovskite solar cell. Acta Physica Sinica, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [5] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [6] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [7] Shuai Jia-Li, Liu Xiang-Xin, Yang Biao. Transport phenomenon of anormalous carriers in ferroelectric-semiconductor coupled solar cell. Acta Physica Sinica, 2016, 65(11): 118101. doi: 10.7498/aps.65.118101
    [8] Xia Xiang, Liu Xi-Zhe. Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [9] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [10] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [11] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [12] Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile. Acta Physica Sinica, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [13] Wang Hai-Xiao, Zheng Xin-He, Wu Yuan-Yuan, Gan Xing-Yuan, Wang Nai-Ming, Yang Hui. Well layer design for 1eV absorption band edge of GaInAs/GaNAs super-lattice solar cell. Acta Physica Sinica, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [14] Chen Xiao-Bo, Yang Guo-Jian, Li Song, Sawanobori N., Xu Yi-Zhuang, Chen Xiao-Duan, Zhou Gu. First-order and second-order infrared quantum cutting of Ho3+ Yb3+ doped oxyfluoride vitroceramics. Acta Physica Sinica, 2012, 61(22): 227803. doi: 10.7498/aps.61.227803
    [15] Chen Xiao-Bo, Xu Yi-Zhuang, Zhang Chun-Lin, Zhang Hui-Min, Zhang Yun-Zhi, Zhou Gu, Li Song. Host sensitized infrared quantum cutting of Er0.1Gd0.9VO4 crystal. Acta Physica Sinica, 2011, 60(10): 107803. doi: 10.7498/aps.60.107803
    [16] Zhang Chun-Lin, Chen Xiao-Bo, Yu Chun-Lei, Hu Li-Li, Pan Wei, Wu Zheng-Long, Liao Hong-Bo. Infrared multi-photon quantum cutting of Er-doped nanophase oxyfluoride vitroceramics. Acta Physica Sinica, 2010, 59(7): 5091-5099. doi: 10.7498/aps.59.5091
    [17] Chen Xiao-Bo, Yang Guo-Jian, Zhang Chun-Lin, Li Yong-Liang, Liao Hong-Bo, Zhang Yun-Zhi, Chen Luan, Wang Ya-Fei. Infrared quantum-cutting analysis of Er0.3Gd0.7VO4 crystal for solar cell application. Acta Physica Sinica, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [18] Xu Ying, Diao Hong-Wei, Zhang Shi-Bin, Li Xu-Dong, Zeng Xiang-Bo, Wang Wen-Jing, Liao Xian-Bo. Deposition of p-type nc-SiC:H thin films with subtle carbon incorporation for applications in p-i-n solar cells. Acta Physica Sinica, 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [19] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Computer simulation of a-Si:H/μc-Si:H diphasic silicon solar cells. Acta Physica Sinica, 2005, 54(7): 3370-3374. doi: 10.7498/aps.54.3370
    [20] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
Metrics
  • Abstract views:  5570
  • PDF Downloads:  397
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2011
  • Accepted Date:  17 June 2011
  • Published Online:  15 March 2012

/

返回文章
返回