Ground state phase diagram of the quantum spin 1 Blume-Capel model: reduced density fidelity study
Zhao Jian-Hui
Postdoctoral Research Station of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
Abstract The reduced density fidelity is a measure of distance between two reduced density matrix, which can be used to characterize quantum phase transitions in quantum many-body systems. In this paper, we use the multi-scale entanglement reorganization ansatz (MERA) algorithm to simulate the spin 1 quantum Blume-Capel model and determine its ground-state phase diagram through calculating the reduced density fidelity. The qualitative relevant information contained in one site reduced density matrix is different from that contained two-site reduced density matrix, which can be detected by using the reduced density fidelity. In addition, we also characterize quantum phase transitions in quantum many-body systems by using the local parameters and energy gaps.
Key words :
quantum phase transition
MERA
reduced density matrix
fidelity
Received: 2012-03-30
PACS:
05.30.Rt
(Quantum phase transitions)
02.70.-c
(Computational techniques; simulations)
Fund: Project supported by the Chongqing Postdoctoral Sustentation Fund (Grant No. CQXM201103019).
Corresponding Authors:
赵建辉
E-mail: jhzhaocqu@126.com
References
[1] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press) p3
[2] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[3] Amico L, Andreas Osterloh, Francesco Plastina, Rosario Fazio, Massimo Palma G 2004 Phys. Rev. A 69 022304
[4] Tommaso Roscilde, Paola Verrucchi, Andrea Fubini, Stephan Haas, Valerio Tognetti 2004 Phys. Rev. Lett. 93 167203
[5] Valerie Coffman, Joydip Kundu, Wootters W K 2000 Phys. Rev. A 61, 052306
[6] Cai Z, Lu W B, Liu Y J 2008 Acta Phys. Sin. 57 7267 (in Chinese) [蔡卓, 陆文彬, 刘拥军 2008 物理学报 57 7267]
[7] Vidal G 2007 Phys. Rev. Lett. 98 070201
[8] Jordan J, Orus R, Vidal G, Verstraete F, Cirac J I 2008 Phys. Rev. Lett. 101 250602
[9] Li B, Li S H, Zhou H Q 2009 Phys. Rev. B 79 060101(R)
[10] Vidal G 2007 Phys. Rev. Lett. 99 220405
[11] Evenbly G, Vidal G 2009 Phys. Rev. B 79 144108
[12] Glen Evenbly, Guifre Vidal 2011 arXiv:1109.5334
[13] Nightingale M P 1976 Physica A 83 561
[14] Hu B, 1980 Phys. Rev. Lett. 75 A 372
[15] Blume M, Emery V J, Griffiths R B 1971 Phys. Rev. A 4 1071
[16] Alcaraz F C, Drugowich de Felicio J R, Stilck J F 1985 Phys. Rev. B 32 7469
[17] Griffiths R B 1970 Phys. Rev. Lett. 24 715
[18] Peliti L, Leiblen S 1984 Phys. Rev. B 29 1253
[19] Hamber H 1980 Phys. Rev. B 21 3999
[20] Blume M 1966 Phys. Rev. 141 517
[21] Capel H W 1967 Physica 37 423
[22] Zhou H Q, Barjaktarevic J P 2008 J. Phys. A: Math. Theor. 41 412001
[23] Zhou H Q, Roman Orus, Guifre Vidal 2008 Physical Review Letters 100 080601
[24] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press, Cambrige) p409
[25] Zhao J H, Wang H L, Li B, Zhou H Q 2010 Physical Review E 82 061127
[26] Liu J H, Shi Q Q, Zhao J H, Zhou H Q 2011 J. Phys. A: Math. Theor. 44 495302
[27] Arizmendi C M, Epele L N, Fanchiotti, Garcia Canal C A 1986 Z. Phys. B Condensed Matter 64 231 235
[28] Xavier J C, Alcaraz F C 2011 Phys. Rev. B 84 094410
[29] Feng D, Jin G J 2003 Condensed Matter Physics (Vol. 1) (Beijing: Higher Education Press) p601 (in Chinese) [冯端, 金国钧 2003 凝聚态物理学 (上卷) (北京: 高等教育出版社) 第601页]
[1]
Li Guan-Qiang,Peng Ping,Cao Zhen-Zhou,Xue Ju-Kui. Adiabatic conversion from ultracold atoms to heteronuclear tetrameric molecule A3 B [J]. Acta Phys. Sin., 2012, 61(9): 090301.
[2]
Qiao Pan-Pan, Ahmad Abliz, Cai Jiang-Tao, Lu Jun-Zhe, Maimaitiyiming Tusun, Ribigu Maimaitiming. Quantum teleportation using superconducting charge qubits in thermal equilibrium [J]. Acta Phys. Sin., 2012, 61(24): 240303.
[3]
Shan Chuan-Jia. Berry phase and quantum phase transition in spin chain system with three-site interaction [J]. Acta Phys. Sin., 2012, 61(22): 220302.
[4]
Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study [J]. Acta Phys. Sin., 2012, 61(21): 210502.
[5]
Pan Chang-Ning, Fang Jian-Shu, Peng Xiao-Fang, Liao Xiang-Ping, Fang Mao-Fa. Fidelity of quantum teleportation of atomic-state in dissipative environment [J]. Acta Phys. Sin., 2011, 60(9): 090303.
[6]
Lü Jing-Fen, Ma Shan-Jun. Fidelity of the photon subtracted (or added) squeezed vacuum state and squeezed cat state [J]. Acta Phys. Sin., 2011, 60(8): 080301.
[7]
Guo Zhen, Yan Lian-Shan, Pan Wei, Luo Bin, Xu Ming-Feng. Influence of decoherence of entanglement on deterministic remote state preparation [J]. Acta Phys. Sin., 2011, 60(6): 060301.
[8]
Shen Yi. A weight's agglomerative method for detecting communities in weighted networks based on weight's similarity [J]. Chin. Phys. B, 2011, 20(4): 040511.
[9]
Li Guan-Qiang, Peng Ping. Effects of external field parameters on conversion from ultracold atoms to heteronuclear triatomic molecules [J]. Acta Phys. Sin., 2011, 60(11): 110304.
[10]
Tong Hong, Zhang Chun-Mei, Shi Zhu-Yi, Wang Hong, Ni Shao-Yong. Nuclear shape phase transition SU (3)→U (5)→SU (3) of the yrast-band structure in 182 Os from nucleonic order [J]. Acta Phys. Sin., 2010, 59(5): 3136-3141.
[11]
. Fidelity susceptibility and quantum phase transitions [J]. Physics, 2010, 39(03): 0-0.
[12]
Meng Shao-Ying, Wu Wei. Adiabatic fidelity for atom-dimer conversion system in stimulated Raman adiabatic passage [J]. Acta Phys. Sin., 2009, 58(8): 5311-5317.
[13]
Shi Zhu-Yi, Tong Hong, Zhang Huan, Wang Hong, Lei Yu-Xi, Zhao Xing-Zhi, Ni Shao-Yong. Evolution of the yrast-band structure in 76 Sr nuclei within microscopic theory [J]. Acta Phys. Sin., 2009, 58(7): 4542-4547.
[14]
Yang Jin-Hu, Wang Hang-Dong, Du Jian-Hua, Zhang Zhu-Jun, Fang Ming-Hu. Ferromagnetic quantum phase transition in Co(S1-x Sex )2 system [J]. Acta Phys. Sin., 2009, 58(2): 1195-1199.
[15]
Yang Jin-Hu, Wang Hang-Dong, Du Jian-Hua, Zhang Zhu-Jun, Fang Ming-Hu. Antiferromagnetic quantum phase transition near x =1.00 in NiS2-x Sex system [J]. Acta Phys. Sin., 2008, 57(4): 2409-2414.