Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature sensitivity of microstructured optical fiber filled with ferrofluid

Miao Yin-Ping Yao Jian-Quan

Citation:

Temperature sensitivity of microstructured optical fiber filled with ferrofluid

Miao Yin-Ping, Yao Jian-Quan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper ferrofluid is infiltrated in the index-guiding microstructured optical fiber (MOF) by the well-known capillary force and air pressure. The influences of the length and concentration of filled fiber on its guidance property are analyzed. Based on the response of fluid refractive index to temperature, the temperature sensitivities of filled MOF with different lengths are investigated without applying any external magnetic field. The results show that the short-wavelength edge of the absorption spectrum near 1460 nm remains unchanged, while the long-wavelength profile is sensitive to the temperature and the transmission power of the filled MOF decreases with the increase of temperature. There is a linear relationship between temperature and transmission power of the filled MOF. For the device with a length of 10 cm, its temperature sensitivity reaches 0.06 dB/℃. Combining the excellent thermo-optic effect of ferrofluid with MOF, the single edge of the device could be tuned by the temperature. It is potential to be used as a thermo-optic modulator, filter, and other adjustable photonics device. Considering a large number of magnetically tunable ferrofluids available and the high degree of freedom in MOF design, ferrofluid-filled MOF shows still a great promise and underexplored possibilities for both basic and applied research, opening new perspectives in optical telecommunication, all-optical switching and fiber-optic sensing applications, such as magnetic field sensors. The present study can offer an effective method for the novel technique and structure of all-in-fiber photonic devices.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2010CB327801), the National Natural Science Foundation of China (Grant Nos. 61274113, 11204212), the China Postdoctoral Science Foundation (Grant No. 2012M520024), and the Natural Science Fund of Tianjin, China (Grant Nos. 10SYSYJC27700, 10ZCKFGX01200, 20100703).
    [1]

    Birks T A, Knight J C, Russell St P J 1997 Opt. Lett. 22 961

    [2]

    Lee C, Chen C, Kao C, Yu C, Yeh S, Cheng W, Lin T 2010 Opt. Express 18 2814

    [3]

    Wei L, Alkeskjold T T, Bjarklev A 2010 Opt. Lett. 35 1608

    [4]

    Wang Y P, Jin W, Jin L, Tan X L, Bartelt H, Ecke W, Moerl K, Schroeder K, Spittel R, Willsch R, Kobelke J, Rothhardt M, Shan L, Brueckner S 2009 Opt. Lett. 34 3683

    [5]

    Steinvurzel P, Moore E D, Mägi E C, Eggleton B J 2006 Opt. Lett. 31 2103

    [6]

    Kerbage C, Hale A, Yablon A, Windeler R S, Eggleton B J 2001 Appl. Phys. Lett. 79 3191

    [7]

    Bise R T, Windeler R S, Kranz K S, Kerbage C, Eggleton B J, Trevor D J 2002 Proceedings of the Optical Fiber Communications Conference Anaheim, USA, March 17-22, 2002 ThK3

    [8]

    Larsen T, Bjarklev A, Hermann D 2003 Opt. Express 11 2589

    [9]

    Kawanishi S, Komukai T 2007 Lasers and Electro-Optics Baltimore, USA, May 6-11, 2007 p4453012

    [10]

    Choi S Y, Cho D K, Song Y W 2012 Opt. Express 20 5652

    [11]

    Rongrui H, Pier J A S, Anna C P, Noel H, Justin R S, Mahesh K, Venkatraman G, John V B 2012 Nature Photonics 6 174

    [12]

    Du Y, Li S G, Liu S 2012 Chin. Phys. B 21 94219

    [13]

    Psaltis D, Quake S R, Yang C 2006 Nature 442 381

    [14]

    Huang Y W, Hu S T, Yang S Y, Horng H E, Hung J C, Hong C Y, Yang H C, Chao C H, Lin C F 2004 Opt. Lett. 29 1867

    [15]

    Horng H E, Chieh J J, Chao Y H, Yang S Y, Hong C Y, Yang H C 2005 Opt. Lett. 30 543

    [16]

    Pu S, Chen X, Chen Y, Xu Y, Liao W, Chen L, Xia Y 2006 J. Appl. Phys. 99 093516

    [17]

    Trigt C 1997 J. Opt. Soc. Am. A 14 741

    [18]

    Thakur H V, Nalawade S M, Gupta S, Kitture R, Kale S N 2011 Appl. Phys. Lett. 99 161101

    [19]

    Candiani A, Konstantaki M, Margulis W 2010 Opt. Express 18 24654

    [20]

    Alessandro C, Walter M, Carola S, Maria K, Stavros P 2011 Opt. Lett. 36 2548

    [21]

    Yang X H, Liu Y X, Tian F J, Yuan L B, Liu Z H, Luo S Z, Zhao E M 2012 Opt. Lett. 37 2115

    [22]

    Du T, Yuan S, Luo W 1994 Appl. Phys. Lett. 65 1844

    [23]

    Du T, Luo W 1998 Appl. Phys. Lett. 72 272

    [24]

    Luo W, Du T, Huang J 1999 J. Magn. Magn. Mater. 201 88

    [25]

    Liberts G, Mitrofanov Y, Cebers A 2003 Proc. SPIE 94 5123

    [26]

    Pu S L, Chen X F, Liao W, Chen L, Chen Y, Xia Y 2004 J. Appl. Phys. 96 5930

    [27]

    Chen Y F, Yang S Y, Tse W S, Horng H E, Hong C Y, Yang H C 2003 Appl. Phys. Lett. 82 348

  • [1]

    Birks T A, Knight J C, Russell St P J 1997 Opt. Lett. 22 961

    [2]

    Lee C, Chen C, Kao C, Yu C, Yeh S, Cheng W, Lin T 2010 Opt. Express 18 2814

    [3]

    Wei L, Alkeskjold T T, Bjarklev A 2010 Opt. Lett. 35 1608

    [4]

    Wang Y P, Jin W, Jin L, Tan X L, Bartelt H, Ecke W, Moerl K, Schroeder K, Spittel R, Willsch R, Kobelke J, Rothhardt M, Shan L, Brueckner S 2009 Opt. Lett. 34 3683

    [5]

    Steinvurzel P, Moore E D, Mägi E C, Eggleton B J 2006 Opt. Lett. 31 2103

    [6]

    Kerbage C, Hale A, Yablon A, Windeler R S, Eggleton B J 2001 Appl. Phys. Lett. 79 3191

    [7]

    Bise R T, Windeler R S, Kranz K S, Kerbage C, Eggleton B J, Trevor D J 2002 Proceedings of the Optical Fiber Communications Conference Anaheim, USA, March 17-22, 2002 ThK3

    [8]

    Larsen T, Bjarklev A, Hermann D 2003 Opt. Express 11 2589

    [9]

    Kawanishi S, Komukai T 2007 Lasers and Electro-Optics Baltimore, USA, May 6-11, 2007 p4453012

    [10]

    Choi S Y, Cho D K, Song Y W 2012 Opt. Express 20 5652

    [11]

    Rongrui H, Pier J A S, Anna C P, Noel H, Justin R S, Mahesh K, Venkatraman G, John V B 2012 Nature Photonics 6 174

    [12]

    Du Y, Li S G, Liu S 2012 Chin. Phys. B 21 94219

    [13]

    Psaltis D, Quake S R, Yang C 2006 Nature 442 381

    [14]

    Huang Y W, Hu S T, Yang S Y, Horng H E, Hung J C, Hong C Y, Yang H C, Chao C H, Lin C F 2004 Opt. Lett. 29 1867

    [15]

    Horng H E, Chieh J J, Chao Y H, Yang S Y, Hong C Y, Yang H C 2005 Opt. Lett. 30 543

    [16]

    Pu S, Chen X, Chen Y, Xu Y, Liao W, Chen L, Xia Y 2006 J. Appl. Phys. 99 093516

    [17]

    Trigt C 1997 J. Opt. Soc. Am. A 14 741

    [18]

    Thakur H V, Nalawade S M, Gupta S, Kitture R, Kale S N 2011 Appl. Phys. Lett. 99 161101

    [19]

    Candiani A, Konstantaki M, Margulis W 2010 Opt. Express 18 24654

    [20]

    Alessandro C, Walter M, Carola S, Maria K, Stavros P 2011 Opt. Lett. 36 2548

    [21]

    Yang X H, Liu Y X, Tian F J, Yuan L B, Liu Z H, Luo S Z, Zhao E M 2012 Opt. Lett. 37 2115

    [22]

    Du T, Yuan S, Luo W 1994 Appl. Phys. Lett. 65 1844

    [23]

    Du T, Luo W 1998 Appl. Phys. Lett. 72 272

    [24]

    Luo W, Du T, Huang J 1999 J. Magn. Magn. Mater. 201 88

    [25]

    Liberts G, Mitrofanov Y, Cebers A 2003 Proc. SPIE 94 5123

    [26]

    Pu S L, Chen X F, Liao W, Chen L, Chen Y, Xia Y 2004 J. Appl. Phys. 96 5930

    [27]

    Chen Y F, Yang S Y, Tse W S, Horng H E, Hong C Y, Yang H C 2003 Appl. Phys. Lett. 82 348

  • [1] Liu Hui-Gang, Zhang Xiang-Yu, Nan Xue-Ying, Zhao Er-Gang, Liu Hai-Tao. All-dielectric metasurface two-parameter sensor based on quasi-bound states in continuum. Acta Physica Sinica, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [2] Lin Hao-Bin, Zhang Shao-Chun, Dong Yang, Zheng Yu, Chen Xiang-Dong, Sun Fang-Wen. Temperature sensing with nitrogen vacancy center in diamond. Acta Physica Sinica, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [3] Shi Hui-Min, Mo Run-Yang, Wang Cheng-Hui. Oscillation behavior of bubble pair in magnetic fluid tube under magneto-acoustic complex field. Acta Physica Sinica, 2022, 71(8): 084302. doi: 10.7498/aps.71.20212150
    [4] Ding Zi-Ping, Liao Jian-Fei, Zeng Ze-Kai. A new type of ultra-broadband microstructured fiber sensor based on surface plasmon resonance. Acta Physica Sinica, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [5] Xu Yi-Quan, Wang Cong. All-optical devices based on two-dimensional materials. Acta Physica Sinica, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [6] Tao Tao. Laboratory study of non-ideal effects in magnetically collimated astrophysical outflows. Acta Physica Sinica, 2020, 69(19): 195202. doi: 10.7498/aps.69.20200559
    [7] Chen Mu-Feng, Li Xiang, Niu Xiao-Dong, Li You, Adnan, Hiroshi Yamaguchi. Sedimentation of two non-magnetic particles in magnetic fluid. Acta Physica Sinica, 2017, 66(16): 164703. doi: 10.7498/aps.66.164703
    [8] Zhao Hao-Yu, Deng Hong-Chang, Yuan Li-Bo. Airy fiber: waveguides array coupling based light beam control method. Acta Physica Sinica, 2017, 66(7): 074211. doi: 10.7498/aps.66.074211
    [9] Zhao Yong, Cai Lu, Li Xue-Gang, Lü Ri-Qing. A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature. Acta Physica Sinica, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [10] Geng Tao, Wu Na, Dong Xiang-Mei, Gao Xiu-Min. Tunable near-zero index of self-assembled photonic crystal using magnetic fluid. Acta Physica Sinica, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [11] Chen Qi-Jie, Zhou Gui-Yao, Shi Fu-Kun, Li Duan-Ming, Yuan Jin-Hui, Xia Chang-Ming, Ge Shu. Study of near-infrared dispersion wave generation for microstructured fiber. Acta Physica Sinica, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [12] Wei Wei, Zhang Xia, Yu Hui, Li Yu-Peng, Zhang Yang-An, Huang Yong-Qing, Chen Wei, Luo Wen-Yong, Ren Xiao-Min. Slow light based on stimulated Brillouin scattering in microstructured fiber. Acta Physica Sinica, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [13] Liu Gui-Xiong, Pu Yao-Ping, Xu Chen. Definition of Helmholtz and Kelvin forces in magnetic fluids. Acta Physica Sinica, 2008, 57(4): 2500-2503. doi: 10.7498/aps.57.2500
    [14] Wang Jian, Lei Nai-Guang, Yu Chong-Xiu. Analysis of confinement loss in microstructured optical fibers with elliptical air holes. Acta Physica Sinica, 2007, 56(2): 946-951. doi: 10.7498/aps.56.946
    [15] Zhou Gui-Yao, Hou Zhi-Yun, Pan Pu-Feng, Hou Lan-Tian, Li Shu-Guang, Han Ying. Temperature distribution of microstructure fiber preform during fiber drawing. Acta Physica Sinica, 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [16] Li Shu-Guang, Zhou Gui-Yao, Xing Guang-Long, Hou Lan-Tian, Wang Qing-Yue, Li Yan-Feng, Hu Ming-Lie. Numerical simulation on ultrashort laser pulses propagating in microstructure fi bers. Acta Physica Sinica, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
    [17] Hu Ming-Lie, Wang Qing-Yue, Li Yan-Feng, Wang Zhuan, Chai Lu, Zhang Wei-Li. Mode-controlled four-wave-mixing in the birefringent microstructure fiber by femtosecond laser pulses. Acta Physica Sinica, 2005, 54(9): 4411-4415. doi: 10.7498/aps.54.4411
    [18] Zhang Chun-Shu, Kai Gui-Yun, Wang Zhi, Wang Chao, Sun Ting-Ting, Zhang Wei-Gang, Liu Yan-Ge, Liu Jian-Fei, Yuan Shu-Zhong, Dong Xiao-Yi. Temperature and strain sensing property of grapefruit microstructure fiber Bragg grating. Acta Physica Sinica, 2005, 54(6): 2758-2763. doi: 10.7498/aps.54.2758
    [19] Qiao Xue-Guang, Jia Zhen-An, Fu Hai-Wei, Li Ming, Zhou Hong. Theory and experiment about in-fiber Bragg grating temperature sensing. Acta Physica Sinica, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
    [20] Li Hong-Xia, Wu Fu-Quan, Fan Ji-Yang. Thermodynamic effect on transmitted intensity perturbance of air-gaped Glan-typ e polarizing prisms. Acta Physica Sinica, 2003, 52(8): 2081-2086. doi: 10.7498/aps.52.2081
Metrics
  • Abstract views:  5309
  • PDF Downloads:  1108
  • Cited By: 0
Publishing process
  • Received Date:  27 July 2012
  • Accepted Date:  08 September 2012
  • Published Online:  05 February 2013

/

返回文章
返回