Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-level authentication based on two-beam interference

He Wen-Qi Peng Xiang Meng Xiang-Feng Liu Xiao-Li

Citation:

Multi-level authentication based on two-beam interference

He Wen-Qi, Peng Xiang, Meng Xiang-Feng, Liu Xiao-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A method of multi-level authentication based on two-beam interference is proposed. By verifying the "password" and "phase key" of one user simultaneously, the system can thus achieve the two-factor authentication on the user's identity. This scheme can not only check the legality of one user, but also verify his identity level as an authorized user and then grant the user the corresponding permissions to access the system resources. While operating the authentication process, which largely depends on an optical setup based on interference, a "phase key" and a password-controlled "phase lock" are firstly loaded on two spatial light modulators (SLMs), separately. Then two coherent beams are respectively, modulated by the two SLMs and then interfere with each other, leading to an interference pattern in the output plane. It is recorded and transmitted to the computer to finish the last step of the authentication process: comparing the interference pattern with the standard verification images in the database of the system to verify whether it is an authorized user. When it turns to the system designing process for a user, which involves an iterative algorithm to acquire an estimated solution of an inverse problem, we need to determine the "phase key" according to a modified phase retrieval iterative algorithm under the condition of an arbitrarily given "phase lock" and a previously determined identity level (corresponding to a certain standard verification image). The theoretical analysis and simulation experiments both validate the feasibility and effectiveness of the proposed scheme.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61171073, 61275014, 61201355, 60907005), the Sino-German Center for Research Promotion (SGCRP) (Grant No. GZ760), the National Natural Science Foundation of Shandong Province, China (Grant No. ZR2011FQ011), the National Science and Technology Program of Shandong Province, China (Grant No. 2011GGH20119), the Research Award Fund for Outstanding Young Scientists of Shandong Province, China (Grant No. BS2011DX023), the Science and Technology Bureau of Shenzhen, China (Grant No. 0014632063100426032), and the Independent Innovation Foundation of Shandong University, China (Grant No. 2010TB019).
    [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767

    [2]

    Situ G H, Zhang J J 2005 Opt. Lett. 30 1306

    [3]

    Situ G H, Zhang J J 2004 Opt. Lett. 29 1584

    [4]

    Peng X, Wei H Z, Zhang P 2006 Opt. Lett. 31 3579

    [5]

    Lin Q Q, Wang F Q, Mi J L, Liang R S, Liu S H 2007 Acta Phys. Sin. 56 5796 (in Chinese) [林青群, 王发强, 米景隆, 梁瑞生, 刘颂豪 2007 物理学报 56 5796]

    [6]

    Peng X, Tang H Q, Tian J D 2007 Acta Phys. Sin. 56 2629 (in Chinese) [彭翔, 汤红乔, 田劲东 2007 物理学报 56 2629]

    [7]

    He W Q, Peng X, Qin W, Meng X F 2010 Opt. Commun. 283 2328

    [8]

    He W Q, Peng X, Meng X F 2012 Opt. Laser Technol. 44 1203

    [9]

    He W Q, Peng X, Qi Y K, Meng X F, Qin W, Gao Z 2010 Acta Phys. Sin. 59 1762 (in Chinese) [何文奇, 彭翔, 祁勇坤, 孟祥锋, 秦琬, 高志 2010 物理学报 59 1762]

    [10]

    Meng X F, Peng X, Cai L Z, He W Q, Qin W, Guo J P, Li A M 2010 Acta Phys. Sin. 59 6118 (in Chinese) [孟祥锋, 彭翔, 蔡履中, 何文奇, 秦琬, 郭继平, 李阿蒙 2010 物理学报 59 6118]

    [11]

    Shi W S, Wang Y L, Xiao J, Yang Y H, Zhang J J 2011 Acta Phys. Sin. 60 034202 (in Chinese) [史祎诗, 王雅丽, 肖俊, 杨玉花, 张静娟 2011 物理学报 60 034202]

    [12]

    Liu Z J, Guo Q, Xu L, Ahmad M A, Liu S T 2010 Opt. Express 18 12033

    [13]

    Liu Z J, Xu L, Ahmad M A, Liu S T 2011 Opt. Commun. 284 123

    [14]

    Wang X G, Zhao D M 2011 Opt. Commun. 284 148

    [15]

    Zhou N R, Wang Y X, Gong L H 2011 Opt. Commun. 284 3234

    [16]

    Zhou N R, Wang Y X, Gong L H, He H, Wu J H 2011 Opt. Commun. 284 2789

    [17]

    Zhang Y, Wang B 2008 Opt. Lett. 33 2443

    [18]

    Wang B, Zhang Y 2009 Opt. Commun. 282 3439

    [19]

    Zhu N, Wang Y T, Liu J, Xie J H, Zhang H 2009 Opt. Express 17 13418

    [20]

    Kumar P, Joseph J, Singh K 2010 J. Opt. 12 095402

    [21]

    Tay C J, Quan C, Chen W, Fu Y 2010 Opt. Laser Technol. 42 409

    [22]

    Kumar P, Joseph J, Singh K 2011 Appl. Opt. 50 1805

    [23]

    Weng D D, Zhu N, Wang Y T, Xie J H, Liu J 2011 Opt. Commun. 284 2485

    [24]

    Yang B, Liu Z J, Wang B, Zhang Y, Liu S T 2011 Opt. Express 19 2634

    [25]

    Wang X G, Zhao D M 2012 Appl. Opt. 51 686

  • [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767

    [2]

    Situ G H, Zhang J J 2005 Opt. Lett. 30 1306

    [3]

    Situ G H, Zhang J J 2004 Opt. Lett. 29 1584

    [4]

    Peng X, Wei H Z, Zhang P 2006 Opt. Lett. 31 3579

    [5]

    Lin Q Q, Wang F Q, Mi J L, Liang R S, Liu S H 2007 Acta Phys. Sin. 56 5796 (in Chinese) [林青群, 王发强, 米景隆, 梁瑞生, 刘颂豪 2007 物理学报 56 5796]

    [6]

    Peng X, Tang H Q, Tian J D 2007 Acta Phys. Sin. 56 2629 (in Chinese) [彭翔, 汤红乔, 田劲东 2007 物理学报 56 2629]

    [7]

    He W Q, Peng X, Qin W, Meng X F 2010 Opt. Commun. 283 2328

    [8]

    He W Q, Peng X, Meng X F 2012 Opt. Laser Technol. 44 1203

    [9]

    He W Q, Peng X, Qi Y K, Meng X F, Qin W, Gao Z 2010 Acta Phys. Sin. 59 1762 (in Chinese) [何文奇, 彭翔, 祁勇坤, 孟祥锋, 秦琬, 高志 2010 物理学报 59 1762]

    [10]

    Meng X F, Peng X, Cai L Z, He W Q, Qin W, Guo J P, Li A M 2010 Acta Phys. Sin. 59 6118 (in Chinese) [孟祥锋, 彭翔, 蔡履中, 何文奇, 秦琬, 郭继平, 李阿蒙 2010 物理学报 59 6118]

    [11]

    Shi W S, Wang Y L, Xiao J, Yang Y H, Zhang J J 2011 Acta Phys. Sin. 60 034202 (in Chinese) [史祎诗, 王雅丽, 肖俊, 杨玉花, 张静娟 2011 物理学报 60 034202]

    [12]

    Liu Z J, Guo Q, Xu L, Ahmad M A, Liu S T 2010 Opt. Express 18 12033

    [13]

    Liu Z J, Xu L, Ahmad M A, Liu S T 2011 Opt. Commun. 284 123

    [14]

    Wang X G, Zhao D M 2011 Opt. Commun. 284 148

    [15]

    Zhou N R, Wang Y X, Gong L H 2011 Opt. Commun. 284 3234

    [16]

    Zhou N R, Wang Y X, Gong L H, He H, Wu J H 2011 Opt. Commun. 284 2789

    [17]

    Zhang Y, Wang B 2008 Opt. Lett. 33 2443

    [18]

    Wang B, Zhang Y 2009 Opt. Commun. 282 3439

    [19]

    Zhu N, Wang Y T, Liu J, Xie J H, Zhang H 2009 Opt. Express 17 13418

    [20]

    Kumar P, Joseph J, Singh K 2010 J. Opt. 12 095402

    [21]

    Tay C J, Quan C, Chen W, Fu Y 2010 Opt. Laser Technol. 42 409

    [22]

    Kumar P, Joseph J, Singh K 2011 Appl. Opt. 50 1805

    [23]

    Weng D D, Zhu N, Wang Y T, Xie J H, Liu J 2011 Opt. Commun. 284 2485

    [24]

    Yang B, Liu Z J, Wang B, Zhang Y, Liu S T 2011 Opt. Express 19 2634

    [25]

    Wang X G, Zhao D M 2012 Appl. Opt. 51 686

  • [1] Zhou Xian-Tao, Jiang Ying-Hua, Guo Xiao-Jun, Peng Zhan. Quantum secure direct communication scheme based on the mixture of single photon and Bell state with two way authentication. Acta Physica Sinica, 2023, 72(13): 130302. doi: 10.7498/aps.72.20221972
    [2] Zhou Xian-Tao, Jiang Ying-Hua. Quantum secure direct communication scheme with identity authentication. Acta Physica Sinica, 2023, 72(2): 020302. doi: 10.7498/aps.72.20221684
    [3] Shan Ming-Guang, Liu Xiang-Yu, Pang Cheng, Zhong Zhi, Yu Lei, Liu Bin, Liu Lei. Off-axis digital holographic decarrier phase recovery algorithm combined with linear regression. Acta Physica Sinica, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [4] Precise phase retrieval with carrier removal from single off-axis hologram by linear regression. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211509
    [5] Zhou Jing, Zhang Xiao-Fang, Zhao Yan-Geng. Phase retrieval wavefront sensing based on image fusion and convolutional neural network. Acta Physica Sinica, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [6] Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang. Technique of detecting optical components based on coherent modulation imaging. Acta Physica Sinica, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [7] Yu Tao, Yang Dong-Yu, Ma Rui, Zhu Yu-Peng, Shi Yi-Shi. Enhanced-visual-cryptography-based optical information hiding system. Acta Physica Sinica, 2020, 69(14): 144202. doi: 10.7498/aps.69.20200496
    [8] Sun Teng-Fei, Lu Peng, Zhuo Zhuang, Zhang Wen-Hao, Lu Jing-Qi. Dual-channel quantitative phase microscopy based on a single cube beamsplitter interferometer. Acta Physica Sinica, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [9] Li Yuan-Jie, He Xiao-Liang, Kong Yan, Wang Shou-Yu, Liu Cheng, Zhu Jian-Qiang. Shearing interferometric electron beam imaging based on ptychographic iterative engine method. Acta Physica Sinica, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [10] He Jiang-Tao, He Wen-Qi, Liao Mei-Hua, Lu Da-Jiang, Peng Xiang. Identity authentication based on two-beam interference and nonlinear correlation. Acta Physica Sinica, 2017, 66(4): 044202. doi: 10.7498/aps.66.044202
    [11] Zhang Pei, Zhou Xiao-Qing, Li Zhi-Wei. Identification scheme based on quantum teleportation for wireless communication networks. Acta Physica Sinica, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [12] Wu Gui-Tong, Zhou Nan-Run, Gong Li-Hua, Liu San-Qiu. Quantum dialogue protocols with identification over collection noisy channel without information leakage. Acta Physica Sinica, 2014, 63(6): 060302. doi: 10.7498/aps.63.060302
    [13] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-Ⅱ. optical design and analysis. Acta Physica Sinica, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [14] Liu Hong-Zhan, Ji Yue-Feng. An ameliorated fast phase retrieval iterative algorithm based on the angular spectrum theory. Acta Physica Sinica, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [15] Yang Zhen-Ya, Zheng Chu-Jun. Phase retrieval of pure phase object based on compressed sensing. Acta Physica Sinica, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [16] Wu Rong, Hua Neng, Zhang Xiao-Bo, Cao Guo-Wei, Zhao Dong-Feng, Zhou Shen-Lei. Large-diameter multi-level diffractive optical elements with high energy efficiency. Acta Physica Sinica, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [17] Li Yang-Yue, Chen Zi-Yang, Liu Hui, Pu Ji-Xiong. Generation and interference of vortex beams. Acta Physica Sinica, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [18] Song Hong-Sheng, Cheng Chuan-Fu, Liu Man, Teng Shu-Yun, Zhang Ning-Yu. Experimental study on phase vortices of speckles and their propagation properties. Acta Physica Sinica, 2009, 58(6): 3887-3896. doi: 10.7498/aps.58.3887
    [19] Huang Yan-Ping, Qi Chun-Yuan. Measurement of refractive index profile of holey fiber using quantitative phase tomography. Acta Physica Sinica, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
Metrics
  • Abstract views:  6101
  • PDF Downloads:  528
  • Cited By: 0
Publishing process
  • Received Date:  24 August 2012
  • Accepted Date:  20 September 2012
  • Published Online:  05 March 2013

/

返回文章
返回