Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of an innovative method for large-scale high-precision absolute distance measurement based on multi-heterodyne interference of dual optical frequency combs

Wang Guo-Chao Yan Shu-Hua Yang Jun Lin Cun-Bao Yang Dong-Xing Zou Peng-Fei

Citation:

Analysis of an innovative method for large-scale high-precision absolute distance measurement based on multi-heterodyne interference of dual optical frequency combs

Wang Guo-Chao, Yan Shu-Hua, Yang Jun, Lin Cun-Bao, Yang Dong-Xing, Zou Peng-Fei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Femtosecond optical frequency comb (FOFC) has been widely used in time-frequency technique and precision spectral measurement. The derivative technique for absolute distance measurement by FOFC, which has features of high-speed, large-scale and high-precision, has become a worldwide research hotspot and is promising to be directly applied in some precision ranging missions, such as large equipment manufacturing, satellites formation flying, laser radar and space gravitation measurement, etc. An innovative method for large-scale and high-precision absolute distance measurement based on multi-heterodyne of dual FOFCs, is proposed in this paper. This method combines the multi-heterodyne cross-correlation distance measurement of dual optical combs with the beat-frequency distance measurement based on repetition frequency of the comb, so that it achieves large-scale and high-precision absolute distance measurement without relying on the earlier judgment with time-of-flight measurement, scanning the repetition frequency or scanning the reference beam path. Based on the basic theory of FOFC and the ranging scheme, the theoretical model for large scale distance measurement chain based on dual FOFCs has been constructed; influence of the multi-heterodyne lowest spectral lines and the repetition frequency stability on the measurement results has been discussed, and lots of simulation calculations have been done. Simulation results show that the method has achieved measurement errors better than ± 50 pm on the premise of not considering the phase demodulation accuracy, and the impact caused by the deviation of the lowest multi-heterodyne spectrum is figured out to be far below the ranging resolution of the multi-heterodyne measurement, which has verified that the proposed method may be used to realize large-scale and high-precision absolute distance measurement.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51275523), the Excellent Graduate Innovative Fund of NUDT (Grant No. B120305), and the Graduate Innovative Research Fund of Hunan Province (Grant No. CX2012B015).
    [1]

    Shelus P J 2001 Surveys in Geophysics 22 517

    [2]

    Peggs G N, Maropoulos P G, Hughes E B, Forbes A B, Robson S, Ziebart M, Muralikrishnan B 2009 Proc. IMechE 223 571

    [3]

    Kopeikin S M, Pavlis E, Pavlis D, Brumberg V A, Escapa A, Getino J, Gusev A, Muller J, Ni W T, Petrova N 2008 Advances in Space Research 42 1378

    [4]

    Battat J B R, Chandler J F, Stubbs C W 2007 Phys. Rev. Lett. 99 241103

    [5]

    Keem T, Gonda S, Misumi I, Huang Q X, Kurosawa T 2004 Applied Optics 43 2443

    [6]

    Kim J W, Kang C S, Kim J A, Eom T, Cho M J, Kong H J 2007 Optics Express 15 15759

    [7]

    Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R, Gao K L 2011 Chin. Phys. Lett. 28 013201

    [8]

    Hall J L 2006 Reviews of Modern Physics 78 1279

    [9]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 6 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [10]

    Nathan R N 2011 nature photonics 5 186

    [11]

    Hall J L 2011 Phil. Trans. R. Soc. A 369 4090

    [12]

    Kim S W 2009 Nature Photonics 3 313

    [13]

    Minoshima K, Matsumoto H 2000 Applied Optics 39 5512

    [14]

    Scott A. Diddams 2010 J. Opt. Soc. Am. B 27 B51

    [15]

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205]

    [16]

    Schliesser A, Picqué N, Hänsch T W 2012 Nature Photonics 6 440

    [17]

    Kim S M, Kim Y S, Park J Y, Han S Y, Park S, Kim Y J, Kim S W 2012 Optics Express 20 15054

    [18]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2012 物理学报 60 100601]

    [19]

    Ye J 2004 Optics Letters 29 1153

    [20]

    Dong W, Satoru T, Kiyoshi T, Hirokazu M 2011 Optics Express 19 4881

    [21]

    Nicolas S, Yves S 2006 Optics Letters 31 3101

    [22]

    Joo K N, Kim S W 2006 Optics Express 14 5954

    [23]

    Berg S A, Persijn S T, Kok G J P 2012 Phys. Rev. Lett. 108 183901

    [24]

    Coddington I, Swann W C, Nenadovic L 2009 Nature Photonics 3 351

    [25]

    Lee J, Kim Y, Lee K 2010 Nature Photonics 4 716

    [26]

    Joo K N, Kim Y, Kim S W 2008 Optics Express 16 19799

    [27]

    Han H N, Zhang W, Wang P, Li D H, Wei Z Y, Shen N C, Nie Y X, Gao Y P, Zhang S G, Li S Q 2007 Acta Phys. Sin. 56 2760 (in Chinese) [韩海年, 张炜, 王鹏, 李德华, 魏志义, 沈乃, 聂玉昕, 高玉平, 张首刚, 李师群 2007 物理学报 56 2760]

    [28]

    Ye J, Cundiff S T 2004 Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (1st Ed.) (Springer Norwell, MA) p11

    [29]

    Zhang W, Han H N, Teng H, Wei Z Y 2009 Chin. Phys. B 18 1105

    [30]

    Dong W, Satoru T, Kiyoshi T, Hirokazu M 2009 Optics Express 17 7011

    [31]

    Shuko Y, Toshiyuki Y, Yuki H, Tsutomu A, Takeshi Y 2009 Optics Express 17 17324

    [32]

    Zhang J T, Wu X J Li Y Wei H Y 2012 Acta Phys. Sin. 61 100601 (in Chinese) [张继涛, 吴学健, 李岩, 尉昊赟 2012 物理学报 61 100601]

  • [1]

    Shelus P J 2001 Surveys in Geophysics 22 517

    [2]

    Peggs G N, Maropoulos P G, Hughes E B, Forbes A B, Robson S, Ziebart M, Muralikrishnan B 2009 Proc. IMechE 223 571

    [3]

    Kopeikin S M, Pavlis E, Pavlis D, Brumberg V A, Escapa A, Getino J, Gusev A, Muller J, Ni W T, Petrova N 2008 Advances in Space Research 42 1378

    [4]

    Battat J B R, Chandler J F, Stubbs C W 2007 Phys. Rev. Lett. 99 241103

    [5]

    Keem T, Gonda S, Misumi I, Huang Q X, Kurosawa T 2004 Applied Optics 43 2443

    [6]

    Kim J W, Kang C S, Kim J A, Eom T, Cho M J, Kong H J 2007 Optics Express 15 15759

    [7]

    Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R, Gao K L 2011 Chin. Phys. Lett. 28 013201

    [8]

    Hall J L 2006 Reviews of Modern Physics 78 1279

    [9]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 6 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [10]

    Nathan R N 2011 nature photonics 5 186

    [11]

    Hall J L 2011 Phil. Trans. R. Soc. A 369 4090

    [12]

    Kim S W 2009 Nature Photonics 3 313

    [13]

    Minoshima K, Matsumoto H 2000 Applied Optics 39 5512

    [14]

    Scott A. Diddams 2010 J. Opt. Soc. Am. B 27 B51

    [15]

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205]

    [16]

    Schliesser A, Picqué N, Hänsch T W 2012 Nature Photonics 6 440

    [17]

    Kim S M, Kim Y S, Park J Y, Han S Y, Park S, Kim Y J, Kim S W 2012 Optics Express 20 15054

    [18]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2012 物理学报 60 100601]

    [19]

    Ye J 2004 Optics Letters 29 1153

    [20]

    Dong W, Satoru T, Kiyoshi T, Hirokazu M 2011 Optics Express 19 4881

    [21]

    Nicolas S, Yves S 2006 Optics Letters 31 3101

    [22]

    Joo K N, Kim S W 2006 Optics Express 14 5954

    [23]

    Berg S A, Persijn S T, Kok G J P 2012 Phys. Rev. Lett. 108 183901

    [24]

    Coddington I, Swann W C, Nenadovic L 2009 Nature Photonics 3 351

    [25]

    Lee J, Kim Y, Lee K 2010 Nature Photonics 4 716

    [26]

    Joo K N, Kim Y, Kim S W 2008 Optics Express 16 19799

    [27]

    Han H N, Zhang W, Wang P, Li D H, Wei Z Y, Shen N C, Nie Y X, Gao Y P, Zhang S G, Li S Q 2007 Acta Phys. Sin. 56 2760 (in Chinese) [韩海年, 张炜, 王鹏, 李德华, 魏志义, 沈乃, 聂玉昕, 高玉平, 张首刚, 李师群 2007 物理学报 56 2760]

    [28]

    Ye J, Cundiff S T 2004 Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (1st Ed.) (Springer Norwell, MA) p11

    [29]

    Zhang W, Han H N, Teng H, Wei Z Y 2009 Chin. Phys. B 18 1105

    [30]

    Dong W, Satoru T, Kiyoshi T, Hirokazu M 2009 Optics Express 17 7011

    [31]

    Shuko Y, Toshiyuki Y, Yuki H, Tsutomu A, Takeshi Y 2009 Optics Express 17 17324

    [32]

    Zhang J T, Wu X J Li Y Wei H Y 2012 Acta Phys. Sin. 61 100601 (in Chinese) [张继涛, 吴学健, 李岩, 尉昊赟 2012 物理学报 61 100601]

  • [1] Zheng Li, Tian Wen-Long, Ma Jun-Yi, Yu Yang, Xu Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi, Zhu Jiang-Feng. Sub-100 fs Kerr-lens mode-locked femtosecond Yb:CaYAlO4 laser with GHz repetition rate. Acta Physica Sinica, 2023, 72(6): 064202. doi: 10.7498/aps.72.20222297
    [2] Wang Ju, Shao Qi, Yu Jin-Long, He Ke-Rui, Luo Hao, Ma Chuang, Cai Zi-Heng, Zheng Zi-Yue, Cai Ben. Laser ranging system based on double intensity modulation. Acta Physica Sinica, 2023, 72(22): 220601. doi: 10.7498/aps.72.20230997
    [3] Liang Xu, Lin Jia-Rui, Wu Teng-Fei, Zhao Hui, Zhu Ji-Gui. Absolute distance measurement using cross correlation interferometer with a repetition rate multiplication frequency comb. Acta Physica Sinica, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [4] Wu Chen-Yi, Wang Lin-Li, Shi Hao-Tian, Wang Yu-Rong, Pan Hai-Feng, Li Zhao-Hui, Wu Guang. Single-photon ranging with hundred-micron accuracy. Acta Physica Sinica, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [5] Wang Guo-Chao, Li Xing-Hui, Yan Shu-Hua, Tan Li-Long, Guan Wen-Liang. Real-time absolute distance measurement by multi-wavelength interferometry synchronously multi-channel phase-locked to frequency comb and analysis for the potential non-ambiguity range. Acta Physica Sinica, 2021, 70(4): 040601. doi: 10.7498/aps.70.20201225
    [6] Xie Tian-Yuan, Wang Ju, Wang Zi-Xiong, Ma Chuang, Yu Yang, Li Tian-Yu, Fang Jie, Yu Jin-Long. Long-range, high-precision absolute distance measurement technology based on alternately oscillating optoelectronic oscillator. Acta Physica Sinica, 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [7] Jiang Hai-Feng. Progresses of ultrastable optical-cavity-based microwave source. Acta Physica Sinica, 2018, 67(16): 160602. doi: 10.7498/aps.67.20180751
    [8] Huang Ke, Li Song, Ma Yue, Tian Xin, Zhou Hui, Zhang Zhi-Yu. Theoretical model and correction method of range walk error for single-photon laser ranging. Acta Physica Sinica, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [9] Zhang Sen, Tao Xu, Feng Zhi-Jun, Wu Gan-Hua, Xue Li, Yan Xia-Chao, Zhang La-Bao, Jia Xiao-Qing, Wang Zhi-Zhong, Sun Jun, Dong Guang-Yan, Kang Lin, Wu Pei-Heng. Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate. Acta Physica Sinica, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [10] Liu Guo-Dong, Xu Xin-Ke, Liu Bing-Guo, Chen Feng-Dong, Hu Tao, Lu Cheng, Gan Yu. A method of suppressing vibration for high precision broadband laser frequency scanning interferometry. Acta Physica Sinica, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [11] Xiao Yang, Yu Jin-Long, Wang Ju, Wang Wen-Rui, Wang Zi-Xiong, Xie Tian-Yuan, Yu Yang, Xue Ji-Qiang. Relationship between modulation frequency and range accuracy in the double polarization modulation range finding system. Acta Physica Sinica, 2016, 65(10): 100601. doi: 10.7498/aps.65.100601
    [12] Sun Qing, Yang Yi, Deng Yu-Qiang, Meng Fei, Zhao Kun. High-precision measurement of terahertz frequency using an unstabilized femtosecond laser. Acta Physica Sinica, 2016, 65(15): 150601. doi: 10.7498/aps.65.150601
    [13] Liu Huan, Gong Ma-Li, Cao Shi-Ying, Lin Bai-Ke, Fang Zhan-Jun. A 303 MHz fundamental repetition rate femtosecond Er:fiber ring laser. Acta Physica Sinica, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [14] Xiang Fei, Wu Ping, Zeng Fan-Guang, Wang Gan-Ping, Li Chun-Xia, Ju Bing-Quan. Fast-pulse repetitive frequency emission characteristic of high current carbon nanotubes cathode. Acta Physica Sinica, 2015, 64(16): 164103. doi: 10.7498/aps.64.164103
    [15] Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation. Acta Physica Sinica, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [16] Hei Ke-Fei, Yu Jin-Long, Wang Ju, Wang Wen-Rui, Jia Shi, Wu Qiong, Xue Ji-Qiang. Variable frequency range finding technology based on double polarization modulation method and system implementation. Acta Physica Sinica, 2014, 63(10): 100602. doi: 10.7498/aps.63.100602
    [17] Liu Hua-Gang, Hu Ming-Lie, Liu Bo-Wen, Song You-Jian, Chai Lu, Wang Qing-Yue. Study on the high-power, high-repetition-rate and multi-wavelength femtosecond laser system. Acta Physica Sinica, 2010, 59(6): 3979-3985. doi: 10.7498/aps.59.3979
    [18] Zhao Yang-Ying, Han Hai-Nian, Teng Hao, Wei Zhi-Yi. Generation of femtoseond Ti:sapphire laser at 10MHz repetition rate by extending laser cavity with a telescope. Acta Physica Sinica, 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [19] Zhang Yong-Hui, Chang An-Bi, Xiang Fei, Song Fa-Lun, Kang Qiang, Luo Min, Li Ming-Jia, Gong Sheng-Gang. Repetition rate of intense current electron-beam diodes using 20 GW pulsed source. Acta Physica Sinica, 2007, 56(10): 5754-5757. doi: 10.7498/aps.56.5754
    [20] Fang Zhan-Jun, Wang Qiang, Wang Min-Ming, Meng Fei, Lin Bai-Ke, Li Tian-Chu. Femtosecond frequency comb and optical frequency measurement of 532 nm Nd:YAG laser. Acta Physica Sinica, 2007, 56(10): 5684-5690. doi: 10.7498/aps.56.5684
Metrics
  • Abstract views:  6468
  • PDF Downloads:  792
  • Cited By: 0
Publishing process
  • Received Date:  25 September 2012
  • Accepted Date:  03 December 2012
  • Published Online:  05 April 2013

/

返回文章
返回