Phase field crystal simulation of microscopic deformation mechanism of reverse Hall-Petch effect in nanocrystalline materials
Zhao Yu-Long, Chen Zheng, Long Jian, Yang Tao
State Key Laboratory of Solidification Processing, Northwestern Ploytechnical University, Xi’an 710072, China
Abstract The nanocrystalline (NC) materials of several average grain sizes ranging from 11.61 to 31.32 nm were obtained by using the phase field crystal model (PFC), and the microscopic deformation mechanism of strengthening law for the uniaxial tensile deformation was discussed. Simulated results show that grain rotation and grain boundary (GB) migration are mainly responsible for the microscopic deformation. Since small grain size is favorable for grain rotation so that it can make the yield strength reduced; and the NC materials would show a reverse Hall-Petch effect. When the grain size is so small and the strain exceeds the yield point to about 4%, dislocation activities begin to occur. Mainly by the change of GB structure (disorganizing triple grain boundary junction and then promoting grain migration), the GB can play a finite contribution to deformation. With increasing grain size, grain rotation becomes difficult, and the grain serration and emission of dislocations are observed.
Key words :
phase field crystal
nanocrystalline materials
reverse Hall-Petch effect
microscopic deformation
Received: 2013-01-11
PACS:
81.07.-b
(Nanoscale materials and structures: fabrication and characterization)
81.07.Bc
(Nanocrystalline materials)
81.40.Lm
(Deformation, plasticity, and creep)
Fund: Project supported by the National Naturale Science Foundation of China (Grant Nos. 51075335, 51174168, 10902086, 51274167), and the Northwestern Polytechnical University Foundation for Fundamental Research, China (Grant No. NPU-FFR-JC20120222).
Corresponding Authors:
赵宇龙
E-mail: 785881882@qq.com
References
[1] Siegel R W 1997 Mater. Sci. Forum. 235-238 851
[2] Sanders P G, Youngdahl C J, Weertman J R 1997 Mater. Sci. Eng. A 234-236 77
[3] Koch C C, Malow T R 1999 Mater. Sci. Forum 312-314 565
[4] Chokshi A H, Rosen A, Karch J, Gleiter H 1990 Scripta. Metall. Mater. 24 2319
[5] Hahn H, Mondal P, Padmanabhan K A 1997 Nanostruct. Mater. 9 603
[6] Lu L, Sui M L, Lu K 2000 Science 287 1463
[7] Mishra R S, Valiev R Z, Mukherjee A K 1997 Nanostruct. Mater. 9 473
[8] Zhou N G, Zhou L 2008 Acta Phys. Sin. 57 3064 (in Chinese) [周耐根, 周浪 2008 物理学报 57 3064]
[9] Wen Y H, Sun S G, Zhang Y, Zhu Z Z 2009 Acta Phys. Sin. 58 2589 (in Chinese) [文玉华, 孙世刚, 张扬, 朱梓忠 2004 物理学报 58 2589]
[10] Shao Y F, Wang S Q, 2010 Acta Phys. Sin. 59 7258 (in Chinese) [邵宇飞, 王绍青 2010 物理学报 59 7258]
[11] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701
[12] Elder K R, Grant M 2004 Phys. Rev. 70E 051605
[13] Chen L Q, Shen J 1998 Comput Phys. Commun. 108 147
[14] Hirouchi T, Takaki T 2009 Comput. Mater. Sci. 44 1192
[1]
Gao Ying-Jun, Luo Zhi-Rong, Huang Chuang-Gao, Lu Qiang-Hua, Lin Kui. Phase-field-crystal modeling for two-dimensional transformation from hexagonal to square structure [J]. Acta Phys. Sin, 2013, 62(5): 050507.
[2]
Guo Can, Wang Zhi-Jun, Wang Jin-Cheng, Guo Yao-Lin, Tang Sai. Effect of the direct correlation function on phase diagram of the two-mode phase field crystal model [J]. Acta Phys. Sin, 2013, 62(10): 108104.
[3]
Hou Bi-Hui,Liu Feng-Yan,Jiao Bin,Yue Ming. Study of electron density of nanostructure metal Tm [J]. Acta Phys. Sin, 2012, 61(7): 077302.
[4]
Wang Yong-Tian, Liu Zong-De, Yi Jun, Xue Zhi-Yong. The magnetocaloric effect of the Gd-based amorphous composite with Gd nanocrystals [J]. Acta Phys. Sin, 2012, 61(5): 056102.
[5]
Sang Shi-Jing, Lü Shu-Chen, Qu Xiu-Rong, Yang Xiao-Xu, Zhang Li-Li. Preparation of ZrO2 :Eu3+ -Bi3+ phosphor and Bi3+ sensitizing characteristic emission of Eu3+ ions [J]. Acta Phys. Sin, 2012, 61(22): 227801.
[6]
Cai Ya-Nan, Cui Can, Shen Hong-Lei, Liang Da-Yu, Li Pei-Gang, Tang Wei-Hua. Effects of thermal treatments on the formation of nanocrystalline Si embedded in Si-rich oxide films [J]. Acta Phys. Sin, 2012, 61(15): 157804.
[7]
Guo Yao-Lin, Wang Jin-Cheng, Wang Zhi-Jun, Tang Sai, Zhou Yao-He. Phase field crystal model for the effect of colored noise on homogenerous nucleation [J]. Acta Phys. Sin, 2012, 61(14): 146401.
[8]
Peng Yong, Xing Ming-Ming, Luo Xi-Xian, Wang Li-Qiang. Synthesis and characteristic research of nanoparticles KY3 F10 : Yb, RE (RE=Er, Ho, Tm) by thermal decomposition [J]. Acta Phys. Sin, 2012, 61(13): 137201.
[9]
Zhang Bao-Hua, Guo Fu-Qiang, Sun Yi, Wang Jun-Jun, Li Yan-Qing, Zhi Li-Li. Solvothermal recrystallized synthesis of one-dimensional CdS nanorods self-assembled from nanoparticles [J]. Acta Phys. Sin, 2012, 61(13): 138101.
[10]
Yang Wei-Ming, Liu Hai-Shun, Dun Chao-Chao, Zhao Yu-Cheng, Dou Lin-Ming. The mechanism of the anomalous variation of grain size for Fe-based nanocrystalline alloys [J]. Acta Phys. Sin, 2012, 61(10): 106802.
[11]
Chen Cheng, Chen Zheng, Zhang Jing, Yang Tao. Simulation of morphological evolution and crystallographic tilt in heteroepitaxial growth using phase-field crystal method [J]. Acta Phys. Sin, 2012, 61(10): 108103.
[12]
Zhang Yang, Song Xiao-Yan, Xu Wen-Wu, Zhang Zhe-Xu. Thermodynamic study and cellular automaton simulation of thermal stability of nanocrystalline SmCo7 alloy [J]. Acta Phys. Sin, 2012, 61(1): 016102.
[13]
Ding Yan-Hong, Li Ming-Ji, Yang Bao-He, Ma Xu. AC magnetic properties of Fe15.38 Co61.52 Cu0.6 Nb2.5 Si11 B9 nanocrystalline soft magnetic alloy [J]. Acta Phys. Sin, 2011, 60(9): 097502.
[14]
Zhang Qi, Wang Jin-Cheng, Zhang Ya-Cong, Yang Gen-Cang. Simulation of multi-grain solidification and subsequent spinodal decomposition by using phase field crystal model [J]. Acta Phys. Sin, 2011, 60(8): 088104.
[15]
Li Yin-Feng, Feng Su-Qin, Wang Jian-Yong. Influence of AC current on the profile of GMI effect in Fe-based nanocrystalline wire [J]. Acta Phys. Sin, 2011, 60(3): 037306.