Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Frequency indistinguishibility investigation of generated coincident-frequency entanglement via ultra-fast pulsed sources

Zhang Yu Quan Run-Ai Bai Yun Hou Fei-Yan Liu Tao Zhang Shou-Gang Dong Rui-Fang

Citation:

Frequency indistinguishibility investigation of generated coincident-frequency entanglement via ultra-fast pulsed sources

Zhang Yu, Quan Run-Ai, Bai Yun, Hou Fei-Yan, Liu Tao, Zhang Shou-Gang, Dong Rui-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The frequency entangled biphoton source generated via spontaneous parametric down-conversion process (SPDC) has found numerous applications in quantum information processing and relevant fields. We report on an experimental generation of coincident-frequency entanglement from periodically poled potassium titanyl phosphate, pumped by an ultra-short pulsed optical source with duration less than 20 fs. Based on the Hong-Ou-Mandel interferometric coincidence measurement setup, a visibility of about 42% is demonstrated, which indicates degraded frequency indistinguishibility of the down-converted biphotons. Through theoretical investigation, such a degradation can be perfectly explained by the nonnegligible second-order dispersion terms in the Taylor-expanded phase mismatching function for the case of ultra-broadband spectrum of the pulsed pump. The fitting to the experimental results is further used and perfect agreement is achieved. The results imply that the spectral bandwidth of the pump can affect the generated coincident-frequency entanglement.
    • Funds: Project supported by the State Key Scientific Instruments and Equipment Development Program of China (Grant No. Y133ZK1101), the National Natural Science Foundation of China (Grant No. 11174282), the Key Fund for the Western Light Talent Cultivation Plan of the Chinese Academy of Sciences (Grant No. 180 (2011)), the Fund for the Scientific and Technical Innovation Cross and Cooperation Team of the Chinese Academy of Sciences (Grant No. 119(2012)), and the open fund of the State Key Laboratory of Transient Optics and Photonics, China.
    [1]

    Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Berlin: Springer-Verlag)

    [2]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [3]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [4]

    KimY H, Kulik S P, Shih Y H 2001 Phys. Rev. Lett. 86 1370

    [5]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [6]

    Jennewein T, Simon C, Weihs G, Weinfurter H, Zeilinger A 2000 Phys. Rev. Lett. 84 4729

    [7]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [8]

    Tittel W, Brendel J, Zbinden H, Gisin N 2000 Phys. Rev. Lett. 84 4737

    [9]

    Naik D S, Peterson C G, White A G, Berglund A J, Kwiat P G 2000 Phys. Rev. Lett. 84 4733

    [10]

    Bennett C H, DiVincenzo D 2000 Nature 404 247

    [11]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319

    [12]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [13]

    Marek P, Fiurasek J 2010 Phys. Rev. A 82 014304

    [14]

    Tipsmark A, Dong R, Laghaout A, Marek P, Jezek M, Andersen U L 2011 Phys. Rev. A 84 050301(R)

    [15]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [16]

    Altman A R, Köpl K G, Corndorf E, Kumar P, Barbosa G A 2005 Phys. Rev. Lett. 94 123601

    [17]

    Erkmen B I, Shapiro J H 2009 Phys. Rev. A 79 023833

    [18]

    Brendel J, Gisin N, Tittel W, Zbinden H 1999 Phys. Rev. Lett. 82 2594

    [19]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [20]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

    [21]

    Steinberg A M, Kwiat P G, Chiao R Y 1992 Phys. Rev. A 45 6659

    [22]

    Giovannetti V, Lloyd S, Maccone L 2001 Phys. Rev. Lett. 87 117902

    [23]

    Bahder T B, Golding W M 2004 7th International Conference on Quantum, Communication Glasgow, UK, July 25-29, 2004 p395

    [24]

    Valencia A, Scarcelli G, Shih Y 2004 Appl. Phys. Lett. 85 2635

    [25]

    Abouraddy A F, Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2002 Phys. Rev. A 65 053817

    [26]

    Sergienko A V, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429

    [27]

    Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601

    [28]

    Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601

    [29]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N C 2002 Phys. Rev. Lett. 88 183602

    [30]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N C 2002 Phys. Rev. A 66 043813

    [31]

    Kuzucu O, Fiorentino M, Albota M A, Wong F C, Kartner F X 2005 Phys. Rev. Lett. 94 083601

    [32]

    Fradkin K, Arie A, Skliar A, Rosenman G 1999 Appl. Phys. Lett. 74 914

    [33]

    Fan T Y, Huang C E, Hu B Q, Eckardt R C, Fan Y X, Byer R L, Feigelson R S 1987 Appl. Opt. 26 2390

    [34]

    Emanueli S, Arie A 2003 Appl. Opt. 42 6661

  • [1]

    Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Berlin: Springer-Verlag)

    [2]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [3]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [4]

    KimY H, Kulik S P, Shih Y H 2001 Phys. Rev. Lett. 86 1370

    [5]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [6]

    Jennewein T, Simon C, Weihs G, Weinfurter H, Zeilinger A 2000 Phys. Rev. Lett. 84 4729

    [7]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [8]

    Tittel W, Brendel J, Zbinden H, Gisin N 2000 Phys. Rev. Lett. 84 4737

    [9]

    Naik D S, Peterson C G, White A G, Berglund A J, Kwiat P G 2000 Phys. Rev. Lett. 84 4733

    [10]

    Bennett C H, DiVincenzo D 2000 Nature 404 247

    [11]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319

    [12]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [13]

    Marek P, Fiurasek J 2010 Phys. Rev. A 82 014304

    [14]

    Tipsmark A, Dong R, Laghaout A, Marek P, Jezek M, Andersen U L 2011 Phys. Rev. A 84 050301(R)

    [15]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [16]

    Altman A R, Köpl K G, Corndorf E, Kumar P, Barbosa G A 2005 Phys. Rev. Lett. 94 123601

    [17]

    Erkmen B I, Shapiro J H 2009 Phys. Rev. A 79 023833

    [18]

    Brendel J, Gisin N, Tittel W, Zbinden H 1999 Phys. Rev. Lett. 82 2594

    [19]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [20]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

    [21]

    Steinberg A M, Kwiat P G, Chiao R Y 1992 Phys. Rev. A 45 6659

    [22]

    Giovannetti V, Lloyd S, Maccone L 2001 Phys. Rev. Lett. 87 117902

    [23]

    Bahder T B, Golding W M 2004 7th International Conference on Quantum, Communication Glasgow, UK, July 25-29, 2004 p395

    [24]

    Valencia A, Scarcelli G, Shih Y 2004 Appl. Phys. Lett. 85 2635

    [25]

    Abouraddy A F, Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2002 Phys. Rev. A 65 053817

    [26]

    Sergienko A V, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429

    [27]

    Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601

    [28]

    Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601

    [29]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N C 2002 Phys. Rev. Lett. 88 183602

    [30]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N C 2002 Phys. Rev. A 66 043813

    [31]

    Kuzucu O, Fiorentino M, Albota M A, Wong F C, Kartner F X 2005 Phys. Rev. Lett. 94 083601

    [32]

    Fradkin K, Arie A, Skliar A, Rosenman G 1999 Appl. Phys. Lett. 74 914

    [33]

    Fan T Y, Huang C E, Hu B Q, Eckardt R C, Fan Y X, Byer R L, Feigelson R S 1987 Appl. Opt. 26 2390

    [34]

    Emanueli S, Arie A 2003 Appl. Opt. 42 6661

  • [1] Zhai Yi-Wei, Li Wang. SSA-BP network model based Hong-Ou-Mandel interference delay measurement and its application in quantum gyroscope. Acta Physica Sinica, 2023, 72(13): 138503. doi: 10.7498/aps.72.20230283
    [2] Tian Ying, Cai Wu-Hao, Yang Zi-Xiang, Chen Feng, Jin Rui-Bo, Zhou Qiang. Hong-Ou-Mandel interference of entangled photons generated under pump-tight-focusing condition. Acta Physica Sinica, 2022, 71(5): 054201. doi: 10.7498/aps.71.20211783
    [3] Liu Wei-Xin, Tang Ning, Ma Long-Xing, Gao Ke-Fan, Sun Ming-Zhe. Consistency of splitting frequency difference with longtudinal modes spacing variation in Zeeman dual-frequency laser. Acta Physica Sinica, 2021, 70(7): 074204. doi: 10.7498/aps.70.20200607
    [4] Zhai Yi-Wei, Dong Rui-Fang, Quan Run-Ai, Xiang Xiao, Liu Tao, Zhang Shou-Gang. Cascaded Hong-Ou-Mandel interference of entangled photon pairs and its application in multiple delay parameters measurement. Acta Physica Sinica, 2021, 70(12): 120302. doi: 10.7498/aps.70.20210071
    [5] Wei Tian-Li, Wu De-Wei, Yang Chun-Yan, Luo Jun-Wen, Li Xiang, Zhu Hao-Nan. Squeezing angle locking of entangled microwave based on photon counting. Acta Physica Sinica, 2019, 68(9): 090301. doi: 10.7498/aps.68.20182077
    [6] Zhang Di, Zhang Yin-Xing, Qiu Xiao-Fen, Zhu Guang-Hu, Li Ke-Zan. Successive lag synchronization on dynamical networks with non-uniform communication delays. Acta Physica Sinica, 2018, 67(1): 018901. doi: 10.7498/aps.67.20171630
    [7] Wu Bin-Bin, Ma Zhong-Jun, Wang Yi. Partial component consensus of leader-following multi-agent systems. Acta Physica Sinica, 2017, 66(6): 060201. doi: 10.7498/aps.66.060201
    [8] Li Yin-Hai, Xu Zhao-Huai, Wang Shuang, Xu Li-Xin, Zhou Zhi-Yuan, Shi Bao-Sen. Hong-Ou-Mandel interference between two independent all-fiber multiplexed photon sources. Acta Physica Sinica, 2017, 66(12): 120302. doi: 10.7498/aps.66.120302
    [9] Xie Yuan-Yan, Wang Yi, Ma Zhong-Jun. Delay consensus of leader-following multi-agent systems. Acta Physica Sinica, 2014, 63(4): 040202. doi: 10.7498/aps.63.040202
    [10] Wang Meng-Meng, Quan Run-Ai, Tai Zhao-Yang, Hou Fei-Yan, Liu Tao, Zhang Shou-Gang, Dong Rui-Fang. Measurement of the spectral properties of the coincident-frequency entangled biphoton state at optical communication wavelength. Acta Physica Sinica, 2014, 63(19): 194206. doi: 10.7498/aps.63.194206
    [11] Tu Li-Lan, Liu Hong-Fang, Yu Le. Local adaptive H∞ consistency of delayed complex networks with noise. Acta Physica Sinica, 2013, 62(14): 140506. doi: 10.7498/aps.62.140506
    [12] Su Tao, Feng Yao-Dong, Zhao Hong-Wu, Huang De-Cai, Sun Gang. Control of the fluctuation in the uniform granular flow by a random force field. Acta Physica Sinica, 2013, 62(16): 164502. doi: 10.7498/aps.62.164502
    [13] Ke Chao, Wang Zhi-Ming, Tu Li-Lan. Consistency of a complex delayed dynamical network with stochastic disturbance. Acta Physica Sinica, 2013, 62(1): 010508. doi: 10.7498/aps.62.010508
    [14] Guo Chun-Sheng, Wan Ning, Ma Wei-Dong, Zhang Yan-Feng, Xiong Cong, Feng Shi-Wei. Rapid identification of the consistency of failure mechanism for constant temperature stress accelerated testing. Acta Physica Sinica, 2013, 62(6): 068502. doi: 10.7498/aps.62.068502
    [15] Ji Liang-Hao, Liao Xiao-Feng, Liu Qun. Group consensus analysis of multi-agent systems with delays. Acta Physica Sinica, 2012, 61(22): 220202. doi: 10.7498/aps.61.220202
    [16] Ji Liang-Hao, Liao Xiao-Feng. Consensus analysis of multi-agent system with multiple time delays. Acta Physica Sinica, 2012, 61(15): 150202. doi: 10.7498/aps.61.150202
    [17] Liu Cheng-Lin, Liu Fei. Consensus problem of coupled autonomousagents with time delays. Acta Physica Sinica, 2011, 60(3): 030202. doi: 10.7498/aps.60.030202
    [18] Wang Ye, Xu Xiao-Liang, Xie Wei-Yu, Wang Zhuang-Bing, Lü Liu, Zhao Ya-Li. Two-step growth of highly oriented ZnO nanorod arrays. Acta Physica Sinica, 2008, 57(4): 2582-2586. doi: 10.7498/aps.57.2582
    [19] A. F. DuNAITSEV, V. S. PANTUEV, YU. D. PROKOSHKIN, TANG SYAO-WEI, M. N. KHACHATURYAN. MEASUREMENT OF THE PANOFSKY RATIO BY THE METHOD OF GAMMA-GAMMA COINCIDENCES. Acta Physica Sinica, 1962, 18(4): 218-220. doi: 10.7498/aps.18.218
    [20] HSU YUNG-CHANG, CHENG LIN-SHENG. COINCIDENCES CAUSED BY COMPTON BACKSCATTERING OF GAMMA-RAYS. Acta Physica Sinica, 1958, 14(2): 114-120. doi: 10.7498/aps.14.114
Metrics
  • Abstract views:  4544
  • PDF Downloads:  645
  • Cited By: 0
Publishing process
  • Received Date:  18 January 2013
  • Accepted Date:  22 February 2013
  • Published Online:  05 July 2013

/

返回文章
返回