Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of ignition process of boron particle with considering Stefan flow effects

Fang Chuan-Bo Xia Zhi-Xun Xiao Yun-Lei Hu Jian-Xin Liu Dao-Ping

Citation:

Study of ignition process of boron particle with considering Stefan flow effects

Fang Chuan-Bo, Xia Zhi-Xun, Xiao Yun-Lei, Hu Jian-Xin, Liu Dao-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A one-dimensional model about the ignition process of boron particle in boron-based propellant ducted rocket is systemically investigated. The gas flow around the boron particle, the heat transfer and the mass transfer between the boron particle and the surrounding are included in the model. And the effects of Stefan flow are also proposed. The changing regularities of important parameters in the two typical cases, viz., the successful ignition case and the degenerate ignition case are studied in detail. And their reasons are analyzed. The result shows that both the evaporation of the liquid boric oxide layer and the oxidation of the boron are remarkably accelerated as the result of the self-heating exothermic oxidation in the successful ignition case, and the mass fraction profiles of the oxygen gas and those of the B2O3 gas also dramatically change in that case. However, both the mass flux of the evaporation of the liquid boric oxide layer and that of the consumption of the oxygen gas are relatively small, and both of them tend to be nearly constant in the degenerate ignition case. The mass fraction profile of the oxygen gas and that of the B2O3 gas change little in the degenerate ignition case. In the two typical cases, Stefan flow on the boron particle surface undergoes the change of flow direction, viz., Stefan flow initially comes from the surrounding and then it flows from the particle surface to the surrounding.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51276194).
    [1]

    Fry R S 2004 J. Propul. Power 20 27

    [2]

    Abbott S W, Smoot L D, Schadow K 1974 AIAA J. 12 275

    [3]

    King M K 1974 Combust. Sci. Tech. 8 255

    [4]

    Kazaoka Y, Takahashi K, Tanabe M, Kuwahare T 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit San Diego, United States, July 31-August 3, 2011 p5867

    [5]

    Wang X W, Cai G B, Jin P 2011 Chin. Phys. B 20 104701

    [6]

    Wang X W, Cai G B, Gao Y S 2011 Chin. Phys. B 20 064701

    [7]

    Glassma I, Williams F A, Antaki P 1985 12th Symposium (International) on Combustion Michigan, United States, August 12-17, 1985 p2057

    [8]

    King M K 1982 19th JANNAF Combust. Meet. Washington, United States, October 4-7, 1982 p27

    [9]

    Zhou W, Yetter R A, Dryer F L 1999 Combust. Flame 117 227

    [10]

    King M K 1982 19th JANNAF Combust. Meet., Washington, United States, October 4-7, 1982 p43

    [11]

    Makino A, Law C K 1988 Combust. Sci. Tech. 61 155

    [12]

    Hussmann B, Pfitzner M 2010 Combust. Flame 157 803

    [13]

    Wu W E, Pei M J, Guo E L, Zhao P, Mao G W 2008 Chinese Journal of Explosives and Propellants 31 79 (in Chinese) [吴婉娥, 裴明敬, 郭耳铃, 赵鹏, 毛根旺 2008 火炸药学报 31 79]

    [14]

    Huo D X, Chen L Q, Liu N S, Ye D Y 2004 Journal of Solid Rocket Technology 27 272 (in Chinese) [霍东兴, 陈林泉, 刘霓生, 叶定友 2004 固体火箭技术 27 272]

    [15]

    Hu J X, Xia Z X, Luo Z B, Miao W B, Guo J, Zhao J M 2004 Chinese Journal of Energetic Materials 12 342 (in Chinese) [胡建新, 夏智勋, 罗振兵, 缪万波, 郭健, 赵建民 2004 含能材料 12 342]

    [16]

    Yang T, Fang D Y, Tang Q G 2008 Combustion Principle of Rocket Engine (Changsha: National University of Defense Technology Press) pp156-217 (in Chinese) [杨涛, 方丁酉, 唐乾刚 2008 火箭发动机燃烧原理(长沙: 国防科技大学出版社) 第156-217页]

    [17]

    Li S C 1990 Ph. D. Dissertation (Princeton: Princeton University)

    [18]

    Yeh C L 1995 Ph. D. Dissertation (Pennsylvania: Pennsylvania State University)

    [19]

    Macek A, Semple J M 1969 Combust. Sci. Tech. 1 181

    [20]

    Fang C B, Xia Z X, Hu J X, Wang D Q, You J 2012 Acta Aeronautica et Astronautica Sinica 33 2153 (in Chinese) [方传波, 夏智勋, 胡建新, 王德全, 游进 2012 航空学报 33 2153]

  • [1]

    Fry R S 2004 J. Propul. Power 20 27

    [2]

    Abbott S W, Smoot L D, Schadow K 1974 AIAA J. 12 275

    [3]

    King M K 1974 Combust. Sci. Tech. 8 255

    [4]

    Kazaoka Y, Takahashi K, Tanabe M, Kuwahare T 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit San Diego, United States, July 31-August 3, 2011 p5867

    [5]

    Wang X W, Cai G B, Jin P 2011 Chin. Phys. B 20 104701

    [6]

    Wang X W, Cai G B, Gao Y S 2011 Chin. Phys. B 20 064701

    [7]

    Glassma I, Williams F A, Antaki P 1985 12th Symposium (International) on Combustion Michigan, United States, August 12-17, 1985 p2057

    [8]

    King M K 1982 19th JANNAF Combust. Meet. Washington, United States, October 4-7, 1982 p27

    [9]

    Zhou W, Yetter R A, Dryer F L 1999 Combust. Flame 117 227

    [10]

    King M K 1982 19th JANNAF Combust. Meet., Washington, United States, October 4-7, 1982 p43

    [11]

    Makino A, Law C K 1988 Combust. Sci. Tech. 61 155

    [12]

    Hussmann B, Pfitzner M 2010 Combust. Flame 157 803

    [13]

    Wu W E, Pei M J, Guo E L, Zhao P, Mao G W 2008 Chinese Journal of Explosives and Propellants 31 79 (in Chinese) [吴婉娥, 裴明敬, 郭耳铃, 赵鹏, 毛根旺 2008 火炸药学报 31 79]

    [14]

    Huo D X, Chen L Q, Liu N S, Ye D Y 2004 Journal of Solid Rocket Technology 27 272 (in Chinese) [霍东兴, 陈林泉, 刘霓生, 叶定友 2004 固体火箭技术 27 272]

    [15]

    Hu J X, Xia Z X, Luo Z B, Miao W B, Guo J, Zhao J M 2004 Chinese Journal of Energetic Materials 12 342 (in Chinese) [胡建新, 夏智勋, 罗振兵, 缪万波, 郭健, 赵建民 2004 含能材料 12 342]

    [16]

    Yang T, Fang D Y, Tang Q G 2008 Combustion Principle of Rocket Engine (Changsha: National University of Defense Technology Press) pp156-217 (in Chinese) [杨涛, 方丁酉, 唐乾刚 2008 火箭发动机燃烧原理(长沙: 国防科技大学出版社) 第156-217页]

    [17]

    Li S C 1990 Ph. D. Dissertation (Princeton: Princeton University)

    [18]

    Yeh C L 1995 Ph. D. Dissertation (Pennsylvania: Pennsylvania State University)

    [19]

    Macek A, Semple J M 1969 Combust. Sci. Tech. 1 181

    [20]

    Fang C B, Xia Z X, Hu J X, Wang D Q, You J 2012 Acta Aeronautica et Astronautica Sinica 33 2153 (in Chinese) [方传波, 夏智勋, 胡建新, 王德全, 游进 2012 航空学报 33 2153]

  • [1] Yang Zhen-Yu, Zhang Yuan-Zhe, Fan Wei, Yang Guang-Jie, Han Xian-Wei. The fluid simulation for the detachment process in the magnetic nozzle of the magnetoplasma rocket engine. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231862
    [2] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [3] Sun Qi-Xia, Zhuang Jian-Hong, Liu Bai-Cheng, Shen Zhen-Xing. Triboelectrification in moving particle flow. Acta Physica Sinica, 2022, 71(8): 084501. doi: 10.7498/aps.71.20211647
    [4] Xie Wen-Tao, Li Ruo-Ru, Peng Zheng, Jiang Yi-Min. Maximum ceasing angle of inclination andflux formula for granular orifice flow in water. Acta Physica Sinica, 2020, 69(10): 104501. doi: 10.7498/aps.69.20200217
    [5] Zhang Yu, Wei Yan-Fang, Peng Zheng, Jiang Yi-Min, Duan Wen-Shan, Hou Mei-Ying. Inclined glass-sand flow and the angle of repose. Acta Physica Sinica, 2016, 65(8): 084502. doi: 10.7498/aps.65.084502
    [6] Zhou Qian-Hong, Dong Zhi-Wei, Jian Gui-Zhou, Zhou Hai-Jing. Theoretical study on the stream formation in the nitrogen switch. Acta Physica Sinica, 2015, 64(20): 205206. doi: 10.7498/aps.64.205206
    [7] Zhang Peng, Hong Yan-Ji, Ding Xiao-Yu, Shen Shuang-Yan, Feng Xi-Ping. Effect of plasma on boron-based two-phase flow diffusion combustion. Acta Physica Sinica, 2015, 64(20): 205203. doi: 10.7498/aps.64.205203
    [8] Zhu Li, Liu Shang-He, Zheng Hui-Zhi, Wei Ming, Hu Xiao-Feng, Sorokin Andrey. Modeling and experimental study of the mechanism of electrification from aero-engine jet. Acta Physica Sinica, 2013, 62(22): 225201. doi: 10.7498/aps.62.225201
    [9] Yang Jin-Zhao, Xia Zhi-Xun, Hu Jian-Xin. Numerical studies of ignition and combustion of pulverized magnesium particle cloud. Acta Physica Sinica, 2013, 62(7): 074701. doi: 10.7498/aps.62.074701
    [10] Yang Jin-Zhao, Xia Zhi-Xun, Hu Jian-Xin. Numerical studies of unsteady ignition of pulverized magnesium particle cloud. Acta Physica Sinica, 2012, 61(16): 164702. doi: 10.7498/aps.61.164702
    [11] Peng Zheng, Jiang Yi-Min. Maximum ceasing angle of inclination and flux formula for granular orifice flow. Acta Physica Sinica, 2011, 60(5): 054501. doi: 10.7498/aps.60.054501
    [12] Wu Xue-Wei, Wu Da-Jian, Liu Xiao-Jun. Effects of B(N, F) doping on optical properties of TiO2 nanoparticles. Acta Physica Sinica, 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [13] Huang De-Cai, Hu Feng-Lan, Deng Kai-Ming, Wu Hai-Ping. Effect of opening angle on dilute-dense flow transition in two-dimensional granular flow. Acta Physica Sinica, 2010, 59(11): 8249-8254. doi: 10.7498/aps.59.8249
    [14] Bao De-Song, Lei Zhe-Min, Hu Guo-Qi, Zhang Xun-Sheng, Tang Xiao-Wei. The effect of opening-angle at choke point on the two-dimensional granular flow on a conveyor belt. Acta Physica Sinica, 2007, 56(10): 5922-5925. doi: 10.7498/aps.56.5922
    [15] Chen Hao, Deng Jin-Xiang, Liu Jun-Kai, Zhou Tao, Zhang Yan, Chen Guang-Hua. Phase transformation in process of deposition of cubic boron nitride thin films. Acta Physica Sinica, 2007, 56(6): 3418-3427. doi: 10.7498/aps.56.3418
    [16] Huang De-Cai, Sun Gang, Hou Mei-Ying, Lu Kun-Quan. The effect of the granule velocity on the dilute-dense flow transition in granular system. Acta Physica Sinica, 2006, 55(9): 4754-4759. doi: 10.7498/aps.55.4754
    [17] Zhou Ying, Bao De-Song, Zhang Xun-Sheng, Lei Zhe-Min, Hu Guo-Qi, Tang Xiao-Wei. Effect of boundary on the two-dimensional inclined channel for a dilute granular flow distribution. Acta Physica Sinica, 2004, 53(10): 3389-3393. doi: 10.7498/aps.53.3389
    [18] Bao De-Song, Zhang Xun-Sheng, Xu Guang-Lei, Pan Zheng-Quan, Tang Xiao-Wei, Lu Kun- Quan. The choke effect on a two-dimensional granular flow and the relation with its speed. Acta Physica Sinica, 2003, 52(2): 401-404. doi: 10.7498/aps.52.401
    [19] Li Xiang, Guo Guang-Can. . Acta Physica Sinica, 2000, 49(4): 702-707. doi: 10.7498/aps.49.702
    [20] HE ZUO-XIU, HUANG TAO. FIELD-CURRENT IDENTITY AND DECAY OF THE PROCESS π+→e++v+γ. Acta Physica Sinica, 1976, 25(5): 409-414. doi: 10.7498/aps.25.409
Metrics
  • Abstract views:  5172
  • PDF Downloads:  512
  • Cited By: 0
Publishing process
  • Received Date:  03 January 2013
  • Accepted Date:  13 May 2013
  • Published Online:  05 August 2013

/

返回文章
返回