Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of voluntary vaccination model based on the node degree information

Hu Zhao-Long Liu Jian-Guo Ren Zhuo-Ming

Citation:

Analysis of voluntary vaccination model based on the node degree information

Hu Zhao-Long, Liu Jian-Guo, Ren Zhuo-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The widespread of epidemics bring tremendous losses to the mankind, thus it is very important to prevent the spread of epidemics. In this paper, the differences between individual tendency of vaccination is taken into account to propose a voluntary vaccination model based on the node degree information. Further, the theoretical analysis result shows that if propagation rate exceed a threshold value, the effectiveness of epidemic spreading (the number of infectious nodes) of the model above and the classical model ignoring the difference between the individual vaccination willingness [Zhang et al 2010 New J. Phys. 12 023015] will be the same. Both the permanent vaccination and the temporary vaccination are considered to analyze the process of epidemic spreading for the Barabási-Albert network by using the SIS model. The numerical simulation results are consistent with the empirical ones very well. Experiments prove that when the infection cost and vaccine cost is the same, the model can prevent the spread of the epidemic more effective as compared with the classical one, and the proportion of the infections decreases over 65% than the classical one. In addition, the longer the live of vaccine, the more effective the prevention of the spread of the epidemic using this model (compared with the classical model ignoring the difference between the individual vaccination willingness).
    • Funds: This work supported by the National Natural Science Foundation of China (Grant Nos. 91024026, 71071098, 71171136), the Innovation Program of Shanghai Municipal Education Commission (Grant Nos. 11ZZ135, 11YZ110), the Key Project of Chinese Ministry of Education (Grant No. 211057), the Shanghai Leading Academic Discipline Project of China (Grant No. XTKX2012), and the Innovation Fund Project for Graduate Student of Shanghai (Grant No. JWCXSL1202).
    [1]

    Ma Z N, Zhou Y C, Wang W D 2004 The mathematical modeling and research on dynamics of infectious diseases (Beijing: science press) pp1–5 (in Chinese) [马知恩, 周义仓, 王稳地 2004 传染病动力学的数学建模与研究(北京: 科学出版社) 第1–5页]

    [2]

    Meyers L A, Pourbohloul B, Newman M E J, Skowronski D M, Brunham R C 2005 J. Theor. Biol. 232 71

    [3]

    Li X, Wang X F 2006 IEEE Trans. Automat. Control 51 534

    [4]

    Liu J G, Wu Z X, Wang F 2007 Int. J. Mod. Phys. C 18 1087

    [5]

    Yu H, Liu Z, Li Y J 2013 Acta Phys. Sin. 62 020204 (in Chinese) [于会, 刘尊, 李勇军 2013 物理学报 62 020204]

    [6]

    Ren Z M, Shao F, Liu J G, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 128901 (in Chinese) [任卓明, 邵凤, 刘建国, 郭强, 汪秉宏 2013 物理学报 62 128901]

    [7]

    Liu J G, Ren Z M, Guo Q 2013 Physica A 392 4154

    [8]

    Hu Q C, Yin Y S, Ma P F, Zhang Y, Xing C X 2013 Acta Phys. Sin. 62 140101 (in Chinese) [庆成, 尹龑燊, 马鹏, 斐高旸, 张勇, 邢春晓 2013 物理学报 62 140101]

    [9]

    Ren Z M, Liu J G, Shao F, Hu Z L, Guo Q 2013 Acta Phys. Sin. 62 108902 (in Chinese) [任卓明, 刘建国, 邵凤, 胡兆龙, 郭强 2013 物理学报 62 108902]

    [10]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese) [刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901]

    [11]

    Mller J, Schönfisch B, Kirkilionis M 2000 J. Math. Biol. 41 143

    [12]

    Pastor-Satorras R, Vespignani A 2002 Phys. Rev. E 65 036104

    [13]

    Cohen R, Havlin S, Ben-Avraham D 2003 Phys. Rev. Lett. 91 247901

    [14]

    Salathé M, Jones J H 2010 PLoS Comput. Biol. 6(4) 1000736

    [15]

    Jiang Z H, Wang H, Gao C 2011 Acta Phys. Sin. 60 058903 (in Chinese) [姜志宏, 王晖, 高超 2011 物理学报 60 58903]

    [16]

    Bauch C T 2005 Proc. R. Soc. B 272 1669

    [17]

    Wang Y Q, J G P 2010 Acta Phys. Sin. 59 6734 (in Chinese) [王亚奇, 蒋国平 2010 物理学报 59 6734]

    [18]

    Perisic A, Bauch C T 2009 BMC Infect. Dis. 9 77

    [19]

    Dushoff J, Plotkin J B, Levin S A, Earn D J D 2004 Proc. Natl Acad. Sci. USA 101 16915

    [20]

    Fu F, Rosenbloom D I, Wang L, Nawak M A 2011 Proc. R. Soc. B 278 42

    [21]

    Bauch C T, Galvani A P, Earn D J D 2003 Proc. Natl Acad. Sci. USA 100 10564

    [22]

    Zhang H, Zhang J, Zhou C, Small M, Wang B 2010 New J. Phys. 12 023015

    [23]

    Anderson R M, May R M, Anderson B 1992 Infectious Diseases of Humans: Dynamics and Control (Oxford : Oxford Science Publications) p66

    [24]

    Zhou T, Liu J G, Bai W J, Chen G R, Wang B H 2006 Phys. Rev. E 74 056109

    [25]

    Albert R, Jeong H, Barabási A L 2000 Nature 406 378

    [26]

    Shi H J, Duan Z S, Chen G R, Li R 2009 Chin. Phys. B 18 3309

  • [1]

    Ma Z N, Zhou Y C, Wang W D 2004 The mathematical modeling and research on dynamics of infectious diseases (Beijing: science press) pp1–5 (in Chinese) [马知恩, 周义仓, 王稳地 2004 传染病动力学的数学建模与研究(北京: 科学出版社) 第1–5页]

    [2]

    Meyers L A, Pourbohloul B, Newman M E J, Skowronski D M, Brunham R C 2005 J. Theor. Biol. 232 71

    [3]

    Li X, Wang X F 2006 IEEE Trans. Automat. Control 51 534

    [4]

    Liu J G, Wu Z X, Wang F 2007 Int. J. Mod. Phys. C 18 1087

    [5]

    Yu H, Liu Z, Li Y J 2013 Acta Phys. Sin. 62 020204 (in Chinese) [于会, 刘尊, 李勇军 2013 物理学报 62 020204]

    [6]

    Ren Z M, Shao F, Liu J G, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 128901 (in Chinese) [任卓明, 邵凤, 刘建国, 郭强, 汪秉宏 2013 物理学报 62 128901]

    [7]

    Liu J G, Ren Z M, Guo Q 2013 Physica A 392 4154

    [8]

    Hu Q C, Yin Y S, Ma P F, Zhang Y, Xing C X 2013 Acta Phys. Sin. 62 140101 (in Chinese) [庆成, 尹龑燊, 马鹏, 斐高旸, 张勇, 邢春晓 2013 物理学报 62 140101]

    [9]

    Ren Z M, Liu J G, Shao F, Hu Z L, Guo Q 2013 Acta Phys. Sin. 62 108902 (in Chinese) [任卓明, 刘建国, 邵凤, 胡兆龙, 郭强 2013 物理学报 62 108902]

    [10]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese) [刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901]

    [11]

    Mller J, Schönfisch B, Kirkilionis M 2000 J. Math. Biol. 41 143

    [12]

    Pastor-Satorras R, Vespignani A 2002 Phys. Rev. E 65 036104

    [13]

    Cohen R, Havlin S, Ben-Avraham D 2003 Phys. Rev. Lett. 91 247901

    [14]

    Salathé M, Jones J H 2010 PLoS Comput. Biol. 6(4) 1000736

    [15]

    Jiang Z H, Wang H, Gao C 2011 Acta Phys. Sin. 60 058903 (in Chinese) [姜志宏, 王晖, 高超 2011 物理学报 60 58903]

    [16]

    Bauch C T 2005 Proc. R. Soc. B 272 1669

    [17]

    Wang Y Q, J G P 2010 Acta Phys. Sin. 59 6734 (in Chinese) [王亚奇, 蒋国平 2010 物理学报 59 6734]

    [18]

    Perisic A, Bauch C T 2009 BMC Infect. Dis. 9 77

    [19]

    Dushoff J, Plotkin J B, Levin S A, Earn D J D 2004 Proc. Natl Acad. Sci. USA 101 16915

    [20]

    Fu F, Rosenbloom D I, Wang L, Nawak M A 2011 Proc. R. Soc. B 278 42

    [21]

    Bauch C T, Galvani A P, Earn D J D 2003 Proc. Natl Acad. Sci. USA 100 10564

    [22]

    Zhang H, Zhang J, Zhou C, Small M, Wang B 2010 New J. Phys. 12 023015

    [23]

    Anderson R M, May R M, Anderson B 1992 Infectious Diseases of Humans: Dynamics and Control (Oxford : Oxford Science Publications) p66

    [24]

    Zhou T, Liu J G, Bai W J, Chen G R, Wang B H 2006 Phys. Rev. E 74 056109

    [25]

    Albert R, Jeong H, Barabási A L 2000 Nature 406 378

    [26]

    Shi H J, Duan Z S, Chen G R, Li R 2009 Chin. Phys. B 18 3309

  • [1] Li Jiang, Liu Ying, Wang Wei, Zhou Tao. Identifying influential nodes in spreading process in higher-order networks. Acta Physica Sinica, 2024, 73(4): 048901. doi: 10.7498/aps.73.20231416
    [2] Ruan Yi-Run, Lao Song-Yang, Tang Jun, Bai Liang, Guo Yan-Ming. Node importance ranking method in complex network based on gravity method. Acta Physica Sinica, 2022, 71(17): 176401. doi: 10.7498/aps.71.20220565
    [3] Li Xin, Zhao Cheng-Li, Liu Yang-Yang. Distinguishing node propagation influence by expected index of finite step propagation range. Acta Physica Sinica, 2020, 69(2): 028901. doi: 10.7498/aps.69.20191313
    [4] Liu Er-Jian, Yan Xiao-Yong. Research advances in intervening opportunity class models for predicting human mobility. Acta Physica Sinica, 2020, 69(24): 248901. doi: 10.7498/aps.69.20201119
    [5] Sun Hao-Chen, Liu Xiao-Fan, Xu Xiao-Ke, Wu Ye. Analysis of COVID-19 spreading and prevention strategy in schools based on continuous infection model. Acta Physica Sinica, 2020, 69(24): 240201. doi: 10.7498/aps.69.20201106
    [6] Huang Li-Ya, Tang Ping-Chuan, Huo You-Liang, Zheng Yi, Cheng Xie-Feng. Node importance based on the weighted K-order propagation number algorithm. Acta Physica Sinica, 2019, 68(12): 128901. doi: 10.7498/aps.68.20190087
    [7] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Chen Li-Dong. Node importance measurement based on neighborhood similarity in complex network. Acta Physica Sinica, 2017, 66(3): 038902. doi: 10.7498/aps.66.038902
    [8] Yang Hui, Tang Ming, Cai Shi-Min, Zhou Tao. Core-periphery structure in heterogeneous adaptive network and its inhibiting effect on epidemic spreading. Acta Physica Sinica, 2016, 65(5): 058901. doi: 10.7498/aps.65.058901
    [9] Hu Yao-Guang, Wang Sheng-Jun, Jin Tao, Qu Shi-Xian. Biased random walks in the scale-free networks with the disassortative degree correlation. Acta Physica Sinica, 2015, 64(2): 028901. doi: 10.7498/aps.64.028901
    [10] Hao Xiao-Chen, Liu Wei-Jing, Xin Min-Jie, Yao Ning, Ru Xiao-Yue. Energy balance and robustness adjustable topology control algorithm for wireless sensor networks. Acta Physica Sinica, 2015, 64(8): 080101. doi: 10.7498/aps.64.080101
    [11] Shu Pan-Pan, Wang Wei, Tang Ming, Shang Ming-Sheng. Discriminability of node influence in flower fractal scale-free networks. Acta Physica Sinica, 2015, 64(20): 208901. doi: 10.7498/aps.64.208901
    [12] Ouyang Bo, Jin Xin-Yu, Xia Yong-Xiang, Jiang Lu-Rong, Wu Duan-Po. Dynamic interplay between epidemics and cascades:Epidemic outbreaks in uncorrelated networks. Acta Physica Sinica, 2014, 63(21): 218902. doi: 10.7498/aps.63.218902
    [13] Ren Zhuo-Ming, Liu Jian-Guo, Shao Feng, Hu Zhao-Long, Guo Qiang. Analysis of the spreading influence of the nodes with minimum K-shell value in complex networks. Acta Physica Sinica, 2013, 62(10): 108902. doi: 10.7498/aps.62.108902
    [14] Yuan Wei-Guo, Liu Yun, Cheng Jun-Jun, Xiong Fei. Empirical analysis of microblog centrality and spread influence based on Bi-directional connection. Acta Physica Sinica, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [15] Huang Bin, Zhao Xiang-Yu, Qi Kai, Tang Ming, Do Younghae. Coloring the complex networks and its application for immunization strategy. Acta Physica Sinica, 2013, 62(21): 218902. doi: 10.7498/aps.62.218902
    [16] Zhou Xuan, Zhang Feng-Ming, Li Ke-Wu, Hui Xiao-Bin, Wu Hu-Sheng. Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica, 2012, 61(5): 050201. doi: 10.7498/aps.61.050201
    [17] Lü Tian-Yang, Piao Xiu-Feng, Xie Wen-Yan, Huang Shao-Bin. Controllability of complex networks based on propagation immunization. Acta Physica Sinica, 2012, 61(17): 170512. doi: 10.7498/aps.61.170512
    [18] Song Yu-Rong, Jiang Guo-Ping. Malware propagation in scale-free networks for the nodes with different anti-attack abilities. Acta Physica Sinica, 2010, 59(2): 705-711. doi: 10.7498/aps.59.705
    [19] Wang Ya-Qi, Jiang Guo-Ping. Virus spreading on complex networks with imperfect immunization. Acta Physica Sinica, 2010, 59(10): 6734-6743. doi: 10.7498/aps.59.6734
    [20] Wen Luo-Sheng, Yang Xiao-Fan, Zhong Jiang. Two-sex epidemic spreading on bipartite scale-free networks. Acta Physica Sinica, 2008, 57(8): 4794-4799. doi: 10.7498/aps.57.4794
Metrics
  • Abstract views:  4888
  • PDF Downloads:  765
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2013
  • Accepted Date:  15 August 2013
  • Published Online:  05 November 2013

/

返回文章
返回