Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of bidirectional dual-channel long-distance chaos secure communication based on 1550nm vertical-cavity surface-emitting lasers

Zhao Yan-Mei Xia Guang-Qiong Wu Jia-Gui Wu Zheng-Mao

Citation:

Investigation of bidirectional dual-channel long-distance chaos secure communication based on 1550nm vertical-cavity surface-emitting lasers

Zhao Yan-Mei, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the chaos synchronization between two pairs of corresponding linear polarization modes in two 1550 nm vertical-cavity surface-emitting lasers (1550 nm-VCSELs) subject to optical injection of common chaotic signals, a novel bidirectional and dual-channel long-distance chaos secure communication system is proposed. The chaotic synchronization characteristics, bidirectional dual-channel communication performance, and the influences of the fiber channel on the message transmission are numerically investigated. Results show that, driven by a common chaotic signal generated from a driver VCSEL (D-VCSEL), two pairs of responding linear polarization modes in two response 1550nm-VCSELs (R-VCSELs) can be synchronized completely and isochronally. Meanwhile, the synchronization coefficients between the two pairs of responding linear polarization modes in D-VCSEL and R-VCSELs are low. Based on the high quality chaos synchronization between two pairs of responding linear modes in two R-VCSELs, bidirectional and dual-channel chaos secure communication can be achieved. After adopting a single mode polarization-maintaining fiber (or dispersion-shifted polarization-maintaining fiber), for 2.5 Gbit/s messages, the Q factor of the decryption signals after transmitting 60 km (or 200 km) can be more than 6.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978003, 61078003, 61178011, 61275116), and the Natural Science Foundation of Chongqing City, China (Grant No. 2012jjB40011).
    [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [2]

    Roy R, Thornburg K S 1994 Phys. Rev. Lett. 72 2009

    [3]

    Mirasso R C, Colet P, Garcia-Fernandez P 1996 IEEE Photon. Technol. Lett. 8 299

    [4]

    Wang Y C, Li Y L, Wang A B, Wang B J, Zhang G W, Guo P 2007 Acta Phys. Sin. 56 4686 (in Chinese) [王云才, 李艳丽, 王安邦, 张耕玮, 郭萍 2007 物理学报 56 4686]

    [5]

    Yan S L 2008 Acta Phys. Sin. 57 2819 (in Chinese) [颜森林 2008 物理学报 61 2819]

    [6]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [7]

    Zhang J Z, Wang A B, Wang J F, Wang Y C 2009 Opt. Express 17 6357

    [8]

    Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 物理学报 58 3793]

    [9]

    Liu H J, Feng J C 2009 Acta Phy. Sin. 58 1484 (in Chinese) [刘慧杰, 冯久超 2009 物理学报 58 1484]

    [10]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [11]

    Zhao Q, Yin H, Chen X, 2012 Appl. Opt. 51 5585

    [12]

    Hu H P, Yu Z L, Liu L F 2012 Acta Phy. Sin. 61 190504 (in Chinese) [胡汉平, 于志良, 刘凌锋 2012 物理学报 61 190504]

    [13]

    Klein E, Gross N, Kopelowitz E, Rosenbluh M, Khaykovich L, Kinzel W, Kanter I 2006 Phys. Rev. E 74 046201

    [14]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237

    [15]

    Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243

    [16]

    Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express. 19 8762

    [17]

    Yamamoto T, Oowada I, Yip H, Uchida A, Yoshimori S, Yoshimura K, Muramatsu J, Goto S, Davis P 2007 Opt. Express 15 3974

    [18]

    Annovazzi-Lodi V, Aromataris G, Benedetti M, Hamacher M, Merlo S, Vercesi V 2010 IEEE J. Quantum Electron. 42 143

    [19]

    Wu J G, Wu Z M, Xia G Q, Deng T, Lin X D, Tang X, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 1854

    [20]

    Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587

    [21]

    Li P, Wu J G, Wu Z M, Lin X D, Deng D, Liu Y R, Xia G Q 2011 Opt. Express 19 2392

    [22]

    Xiao Y, Deng T, Wu Z M, Wu J G, Lin X D, Tang X, Zeng L B, Xia G Q 2012 Opt. Commun. 285 1442

    [23]

    Jiang N, Pan W, Luo B, Xiang S Y, Yang L, 2012 IEEE Photon. Technol. Lett. 24 1094

    [24]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [25]

    Agrawal G P 2001 Nonlinear Fiber Optics (3rd Edn) (California: Academic Press) p49

    [26]

    Bergano N S, Kerfoot F W, Davidson C R 1993 IEEE Photon. Technol. Lett. 5 304

    [27]

    Bogris A, Kanakidis D, Argyris A, Syvridis D 2004 IEEE J. Quantum Electron. 40 1326

    [28]

    Zheng A J, Wu Z M, Deng T, Li X J, Xia G Q 2012 Acta Phys. Sin. 61 234203 (in Chinese) [郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼 2012 物理学报 61 234203]

    [29]

    Nguimdo R M, Lavrov R, Colet P, Jacquot M, Chembo Y K, Larger L 2010 J. Lightw. Technol. 28 2688

    [30]

    Wu J G, Wu Z M, Liu Y R, Fan L, Tang X, Xia G Q 2013 J. Lightw. Technol. 31 461

  • [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [2]

    Roy R, Thornburg K S 1994 Phys. Rev. Lett. 72 2009

    [3]

    Mirasso R C, Colet P, Garcia-Fernandez P 1996 IEEE Photon. Technol. Lett. 8 299

    [4]

    Wang Y C, Li Y L, Wang A B, Wang B J, Zhang G W, Guo P 2007 Acta Phys. Sin. 56 4686 (in Chinese) [王云才, 李艳丽, 王安邦, 张耕玮, 郭萍 2007 物理学报 56 4686]

    [5]

    Yan S L 2008 Acta Phys. Sin. 57 2819 (in Chinese) [颜森林 2008 物理学报 61 2819]

    [6]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [7]

    Zhang J Z, Wang A B, Wang J F, Wang Y C 2009 Opt. Express 17 6357

    [8]

    Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 物理学报 58 3793]

    [9]

    Liu H J, Feng J C 2009 Acta Phy. Sin. 58 1484 (in Chinese) [刘慧杰, 冯久超 2009 物理学报 58 1484]

    [10]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [11]

    Zhao Q, Yin H, Chen X, 2012 Appl. Opt. 51 5585

    [12]

    Hu H P, Yu Z L, Liu L F 2012 Acta Phy. Sin. 61 190504 (in Chinese) [胡汉平, 于志良, 刘凌锋 2012 物理学报 61 190504]

    [13]

    Klein E, Gross N, Kopelowitz E, Rosenbluh M, Khaykovich L, Kinzel W, Kanter I 2006 Phys. Rev. E 74 046201

    [14]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237

    [15]

    Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243

    [16]

    Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express. 19 8762

    [17]

    Yamamoto T, Oowada I, Yip H, Uchida A, Yoshimori S, Yoshimura K, Muramatsu J, Goto S, Davis P 2007 Opt. Express 15 3974

    [18]

    Annovazzi-Lodi V, Aromataris G, Benedetti M, Hamacher M, Merlo S, Vercesi V 2010 IEEE J. Quantum Electron. 42 143

    [19]

    Wu J G, Wu Z M, Xia G Q, Deng T, Lin X D, Tang X, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 1854

    [20]

    Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587

    [21]

    Li P, Wu J G, Wu Z M, Lin X D, Deng D, Liu Y R, Xia G Q 2011 Opt. Express 19 2392

    [22]

    Xiao Y, Deng T, Wu Z M, Wu J G, Lin X D, Tang X, Zeng L B, Xia G Q 2012 Opt. Commun. 285 1442

    [23]

    Jiang N, Pan W, Luo B, Xiang S Y, Yang L, 2012 IEEE Photon. Technol. Lett. 24 1094

    [24]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [25]

    Agrawal G P 2001 Nonlinear Fiber Optics (3rd Edn) (California: Academic Press) p49

    [26]

    Bergano N S, Kerfoot F W, Davidson C R 1993 IEEE Photon. Technol. Lett. 5 304

    [27]

    Bogris A, Kanakidis D, Argyris A, Syvridis D 2004 IEEE J. Quantum Electron. 40 1326

    [28]

    Zheng A J, Wu Z M, Deng T, Li X J, Xia G Q 2012 Acta Phys. Sin. 61 234203 (in Chinese) [郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼 2012 物理学报 61 234203]

    [29]

    Nguimdo R M, Lavrov R, Colet P, Jacquot M, Chembo Y K, Larger L 2010 J. Lightw. Technol. 28 2688

    [30]

    Wu J G, Wu Z M, Liu Y R, Fan L, Tang X, Xia G Q 2013 J. Lightw. Technol. 31 461

  • [1] Dang Jun-Po, Jiang Xiu-Juan, Tang Zhen-Hua. Technique of TiNi-based shape memory alloy thin film coating on optical fibers. Acta Physica Sinica, 2022, 71(3): 030701. doi: 10.7498/aps.71.20211437
    [2] Lin Yi, Wu Feng-Chuan, Mao Rui-Qi, Yao Jia-Wei, Liu Yi, An Qiang, Fu Yun-Qi. Development of three-port fiber-coupled vapor cell probe and its application in microwave digital communication. Acta Physica Sinica, 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594
    [3] Study on technique of TiNi-based shape memory alloy thin film coating on optical fibers. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211437
    [4] Cui Can, Wang Zhi, Li Qiang, Wu Chong-Qing, Wang Jian. Modulation of orbital angular momentum in long periodchirally-coupled-cores fiber. Acta Physica Sinica, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [5] Deng Wei, Xia Guang-Qiong, Wu Zheng-Mao. Dual-channel chaos synchronization and communication based on a vertical-cavity surface emitting laser with double optical feedback. Acta Physica Sinica, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [6] Tang Liang-Rui, Fan Bing, Kang Zhong-Miao. A chaos synchronization method based on amplitude. Acta Physica Sinica, 2012, 61(8): 080508. doi: 10.7498/aps.61.080508
    [7] Liu Yu-Ran, Wu Zheng-Mao, Wu Jia-Gui, Li Ping, Xia Guang-Qiong. A new type of bidirectional long distance optical fiber chaotic secure communication system. Acta Physica Sinica, 2012, 61(2): 024203. doi: 10.7498/aps.61.024203
    [8] Ding Ling, Wu Zheng-Mao, Wu Jia-Gui, Xia Guang-Qiong. Unidirectional open-loop chaotic synchronization communication based on a semiconductor laser with double optical feedback. Acta Physica Sinica, 2012, 61(1): 014212. doi: 10.7498/aps.61.014212
    [9] Yang Lei, Ma Xiao-Xin, Cui Liang, Guo Xue-Shi, Li Xiao-Ying. Fiber-based narrow-band single-photon source with high heralding efficiency. Acta Physica Sinica, 2011, 60(11): 114206. doi: 10.7498/aps.60.114206
    [10] Guo Wen-Hua, Wang Ming, Xia Wei, Dai Li-Hua, Cui En-Ying, Ni Hai-Bin. Three-dimensional tunable colloidal photonic crystal self-assembled on the end face of an optical fiber. Acta Physica Sinica, 2011, 60(12): 124213. doi: 10.7498/aps.60.124213
    [11] Hu Zhi-Hui, Feng Jiu-Chao. Chaotic communications with multiuser based on unscented Kalman filter. Acta Physica Sinica, 2011, 60(7): 070505. doi: 10.7498/aps.60.070505
    [12] Bai Lu, Guo Jing-Bo. Breakability of chaotic direct sequence spreading spectrum secure system under multi-path fading channel. Acta Physica Sinica, 2011, 60(7): 070504. doi: 10.7498/aps.60.070504
    [13] Zhao Li-Juan. Influence of environment temperature wide-range variation on Brillouin shift in optical fiber. Acta Physica Sinica, 2010, 59(9): 6219-6223. doi: 10.7498/aps.59.6219
    [14] Huang Xiao-Dong, Zhang Xiao-Min, Wang Jian-Jun, Xu Dang-Peng, Zhang Rui, Lin Hong-Huan, Deng Ying, Geng Yuan-Chao, Yu Xiao-Qiu. The effect of dispersion on FM-AM coversion in high power laser front end. Acta Physica Sinica, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [15] Guo Dong-Ming, Yang Ling-Zhen, Wang An-Bang, Zhang Xiu-Juan, Wang Yun-Cai. Modulation of feedback strength to enhance the security of chaos optical communication system. Acta Physica Sinica, 2009, 58(12): 8275-8280. doi: 10.7498/aps.58.8275
    [16] Yang Lei, Li Xiao-Ying, Wang Bao-Shan. Experimental schemes for developing fiber-based source of entangled photon pairs. Acta Physica Sinica, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [17] Fan Yong-Quan, Zhang Jia-Shu. Narrowband interference suppression in chaos-based communications based on set-membership estimation. Acta Physica Sinica, 2008, 57(5): 2714-2721. doi: 10.7498/aps.57.2714
    [18] Yan Sen-Lin. Studies on dual-core-bidirectional optical fiber chaotic secure communication system. Acta Physica Sinica, 2008, 57(5): 2819-2826. doi: 10.7498/aps.57.2819
    [19] Yan Sen-Lin. Nonlinear evolution of chaotic signal transmission in optical fiber. Acta Physica Sinica, 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [20] Zhuang Fei, Shen Jian-Qi. Investigation of photon geometric phases inside a curved fiber made of biaxially anisotropic left-handed media. Acta Physica Sinica, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
Metrics
  • Abstract views:  4875
  • PDF Downloads:  457
  • Cited By: 0
Publishing process
  • Received Date:  04 June 2013
  • Accepted Date:  24 June 2013
  • Published Online:  05 November 2013

/

返回文章
返回