Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of H2 introduction on wide-spectrum Mg and Ga co-doped ZnO transparent conductive thin films

Tian Cong-Sheng Chen Xin-Liang Liu Jie-Ming Zhang De-Kun Wei Chang-Chun Zhao Ying Zhang Xiao-Dan

Citation:

Influence of H2 introduction on wide-spectrum Mg and Ga co-doped ZnO transparent conductive thin films

Tian Cong-Sheng, Chen Xin-Liang, Liu Jie-Ming, Zhang De-Kun, Wei Chang-Chun, Zhao Ying, Zhang Xiao-Dan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • To meet the demands of high efficient silicon thin film solar cells, transparent conductive hydrogenated Mg and Ga co-doped ZnO (HMGZO) thin films were deposited via pulsed direct current (DC) magnetron sputtering on glass substrates at a substrate temperature of 553 K. The micro-structural, morphological, electrical, and optical properties of HMGZO thin films were investigated at various H2 flow rates. Experimental results show that all the HMGZO thin films are polycrystalline with a hexagonal wurtzite structure exhibiting a preferred (002) crystal plane orientation. Appropriate H2 flow rate increases grain size and also enhances the RMS roughness. The deposition rate of HMGZO films decreases with the increase of H2 flow rate due to the decrease of sputtering yield. Resistivity of HMGZO thin films decreases rapidly from 117 to 7.2×10-3 Ω·cm with increasing H2 flow rate from 0 to 4.0 sccm. With further increasing H2 flow rate (4.0–16.0 sccm), the resistivity increases slightly due to the reduced carrier concentration and excessive H atoms as impurity. Optical transmittance of all the HMGZO thin films is higher than 87.7% in the wavelength range from 320 to 1100 nm. Burstein-Moss band-filling determined by carrier concentrations and the incorporation of Mg atoms together contribute to the band-gap (Eg) widening phenomenon. The band gap Eg varies from ~ 3.49–3.70 eV and the maximum Eg of 3.70 eV is obtained at a H2 flow rate of 16.0 sccm.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2011CBA00705, 2011CBA00706, 2011CBA00707), the Tianjin Applied Basic Research Project and Cutting-edge Technology Research Plan, China (Grant No. 13JCZDJC26900), the Tianjin Major Science and Technology Support Project, China (Grant No. 11TXSYGX22100), the National High Technology Research and Development Program of China (Grant No. 2013AA050302), and the Fundamental Research Funds for the Central Universities of China (Grant No. 65010341).
    [1]

    Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539

    [2]

    Li H, Wang N, Liu X 2008 Opt. Express 16 194

    [3]

    Mller J, Rech B, Springer J, Vanecek M 2004 Sol. Energy 77 917

    [4]

    Yu X M, Zhao J, Hou G F, Zhang J J, Zhang X D, Zhao Y 2013 Acta Phys. Sin. 62 120101 (in Chinese) [于晓明, 赵静, 侯国付, 张建军, 张晓丹, 赵颖 2013 物理学报 62 120101]

    [5]

    Wang G H, Zhao L, Yan B J, Chen J W, Wang G, Diao H W, Wang W J 2013 Chin. Phys. B 22 68102

    [6]

    Fan H B, Zheng X L, Wu S C, Liu Z G, Yao H B 2012 Chin. Phys. B 21 38101

    [7]

    Zhang C, Cheng X L, Wang F, Yan C B, Huang Q, Zhao Y, Zhang X D, Geng X H 2012 Acta Phys. Sin. 61 238101 [张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华 2012 物理学报 61 238101]

    [8]

    Moss T S 1954 Proc. Phys. Soc. Sect. B 67 775

    [9]

    Burstein E 1954 Phys. Rev. 93 632

    [10]

    Wang F, Chen X L, Geng X H, Zhang D K, Wei C C, Huang Q, Zhang X D, Zhao Y 2012 Appl. Surf. Sci. 258 9005

    [11]

    Jang S H, Chichibu S F 2012 J. Appl. Phys. 112 073503

    [12]

    Shin S W, Kim I Y, Lee G H, Agawane G L, Mohokar A V, Heo G S, Kim J H, Lee J Y 2011 Cryst. Growth Des. 11 4819

    [13]

    Gu X, Zhu L, Ye Z, Ma Q, He H, Zhang Y, Zhao B 2008 Sol. Energy Mater. Sol. Cells 92 343

    [14]

    Matsubara K, Tampo H, Shibata H, Yamada A, Fons P, Iwata K, Niki S 2004 Appl. Phys. Lett. 85 1374

    [15]

    Cohen D J, Ruthe K C, Barnett S A 2004 J. Appl. Phys. 96 459

    [16]

    Duenow J N, Gessert T A, Wood D M, Young D L, Coutts T J 2008 J. Non-cryst. Solids. 354 2787

    [17]

    Park Y R, Kim J, Kim Y S 2009 Appl. Surf. Sci. 255 9010

    [18]

    Van De Walle C G 2000 Phys. Rev. Lett. 85 1012

    [19]

    Van De Walle C G, Neugebauer J 2003 Nature 423 626

    [20]

    Janotti A, Van De Walle C G 2007 Nature Mater. 6 44

    [21]

    Lavrov E V, Börrnert F, Weber J 2006 Physica B 376-377 694

    [22]

    Shi G A, Stavola M, Pearton S J, Thieme M, Lavrov E V, Weber J 2005 Phys. Rev. B 72 195211

    [23]

    Zhou Z, Kato K, Komaki T, Yoshino M, Yukawa H, Morinaga M 2004 Int. J. Hydrogen Energ 29 323

    [24]

    Tark S J, Ok Y W, Kang M G, Lim H J, Kim W M, Kim D 2009 J. Electroceram. 23 548

    [25]

    Song D, Aberle A G, Xia J 2002 Appl. Surf. Sci. 195 291

    [26]

    Prasada Rao T, Santhosh Kumar M C, Sooraj Hussain N 2012 J. Alloy. Compd. 541 495

    [27]

    Zhang X D, Guo M L, Liu C L, Zhang L A, Zhang W Y, Ding Y Q, Wu Q, Feng X 2008 Eur. Phys. J. B 62 417

  • [1]

    Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539

    [2]

    Li H, Wang N, Liu X 2008 Opt. Express 16 194

    [3]

    Mller J, Rech B, Springer J, Vanecek M 2004 Sol. Energy 77 917

    [4]

    Yu X M, Zhao J, Hou G F, Zhang J J, Zhang X D, Zhao Y 2013 Acta Phys. Sin. 62 120101 (in Chinese) [于晓明, 赵静, 侯国付, 张建军, 张晓丹, 赵颖 2013 物理学报 62 120101]

    [5]

    Wang G H, Zhao L, Yan B J, Chen J W, Wang G, Diao H W, Wang W J 2013 Chin. Phys. B 22 68102

    [6]

    Fan H B, Zheng X L, Wu S C, Liu Z G, Yao H B 2012 Chin. Phys. B 21 38101

    [7]

    Zhang C, Cheng X L, Wang F, Yan C B, Huang Q, Zhao Y, Zhang X D, Geng X H 2012 Acta Phys. Sin. 61 238101 [张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华 2012 物理学报 61 238101]

    [8]

    Moss T S 1954 Proc. Phys. Soc. Sect. B 67 775

    [9]

    Burstein E 1954 Phys. Rev. 93 632

    [10]

    Wang F, Chen X L, Geng X H, Zhang D K, Wei C C, Huang Q, Zhang X D, Zhao Y 2012 Appl. Surf. Sci. 258 9005

    [11]

    Jang S H, Chichibu S F 2012 J. Appl. Phys. 112 073503

    [12]

    Shin S W, Kim I Y, Lee G H, Agawane G L, Mohokar A V, Heo G S, Kim J H, Lee J Y 2011 Cryst. Growth Des. 11 4819

    [13]

    Gu X, Zhu L, Ye Z, Ma Q, He H, Zhang Y, Zhao B 2008 Sol. Energy Mater. Sol. Cells 92 343

    [14]

    Matsubara K, Tampo H, Shibata H, Yamada A, Fons P, Iwata K, Niki S 2004 Appl. Phys. Lett. 85 1374

    [15]

    Cohen D J, Ruthe K C, Barnett S A 2004 J. Appl. Phys. 96 459

    [16]

    Duenow J N, Gessert T A, Wood D M, Young D L, Coutts T J 2008 J. Non-cryst. Solids. 354 2787

    [17]

    Park Y R, Kim J, Kim Y S 2009 Appl. Surf. Sci. 255 9010

    [18]

    Van De Walle C G 2000 Phys. Rev. Lett. 85 1012

    [19]

    Van De Walle C G, Neugebauer J 2003 Nature 423 626

    [20]

    Janotti A, Van De Walle C G 2007 Nature Mater. 6 44

    [21]

    Lavrov E V, Börrnert F, Weber J 2006 Physica B 376-377 694

    [22]

    Shi G A, Stavola M, Pearton S J, Thieme M, Lavrov E V, Weber J 2005 Phys. Rev. B 72 195211

    [23]

    Zhou Z, Kato K, Komaki T, Yoshino M, Yukawa H, Morinaga M 2004 Int. J. Hydrogen Energ 29 323

    [24]

    Tark S J, Ok Y W, Kang M G, Lim H J, Kim W M, Kim D 2009 J. Electroceram. 23 548

    [25]

    Song D, Aberle A G, Xia J 2002 Appl. Surf. Sci. 195 291

    [26]

    Prasada Rao T, Santhosh Kumar M C, Sooraj Hussain N 2012 J. Alloy. Compd. 541 495

    [27]

    Zhang X D, Guo M L, Liu C L, Zhang L A, Zhang W Y, Ding Y Q, Wu Q, Feng X 2008 Eur. Phys. J. B 62 417

  • [1] Hong Zi-Fan, Chen Hai-Feng, Jia Yi-Fan, Qi Qi, Liu Ying-Ying, Guo Li-Xin, Liu Xiang-Tai, Lu Qin, Li Li-Jun, Wang Shao-Qing, Guan Yun-He, Hu Qi-Ren. Characteristics of Ga2O3 epitaxial films on seed layer grown by magnetron sputtering. Acta Physica Sinica, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [2] Ma Hai-Lin, Su Qing. Effect of oxygen pressure on structure and optical band gap of gallium oxide thin films prepared by sputtering. Acta Physica Sinica, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [3] Chen Ming, Zhou Xi-Ying, Mao Xiu-Juan, Shao Jia-Jia, Yang Guo-Liang. Influence of external magnetic field on properties of aluminum-doped zinc oxide films prepared by RF magnetron sputtering. Acta Physica Sinica, 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [4] Zhang Chuan-Jun, Wu Yun-Hua, Cao Hong, Gao Yan-Qing, Zhao Shou-Ren, Wang Shan-Li, Chu Jun-Hao. Effects of different substrates and CdCl2 treatment on the properties of CdS thin films deposited by magnetron sputtering. Acta Physica Sinica, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [5] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [6] Tong Guo-Xiang, Li Yi, Wang Feng, Huang Yi-Ze, Fang Bao-Ying, Wang Xiao-Hua, Zhu Hui-Qun, Liang Qian, Yan Meng, Qin Yuan, Ding Jie, Chen Shao-Juan, Chen Jian-Kun, Zheng Hong-Zhu, Yuan Wen-Rui. Preparation of W-doped VO2/FTO composite thin films by DC magnetron sputtering and characterization analyses of the films. Acta Physica Sinica, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [7] Shen Xiang-Qian, Xie Quan, Xiao Qing-Quan, Chen Qian, Feng Yun. Computer simulation of the glow discharge characteristics in magnetron sputtering. Acta Physica Sinica, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [8] Luo Xiao-Dong, Di Guo-Qing. Ge and Nb co-doped TiO2 films with narrow band gap and low resistivity prepared by sputtering. Acta Physica Sinica, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [9] Ju Dong-Ying, Ding Wan-Yu, Chai Wei-Ping, Wang Hua-Lin. Composition and crystal structure of N doped TiO2 film deposited with different O2 flow rates. Acta Physica Sinica, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [10] Li Lin-Na, Chen Xin-Liang, Wang Fei, Sun Jian, Zhang De-Kun, Geng Xin-Hua, Zhao Ying. Effects of hydrogen flux on aluminum doped zinc thin films by pulsed magnetron sputtering. Acta Physica Sinica, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [11] Ding Wan-Yu, Xu Jun, Lu Wen-Qi, Deng Xin-Lu, Dong Chuang. An XPS study on the structure of SiNx film deposited by microwave ECR magnetron sputtering. Acta Physica Sinica, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [12] Liu Feng, Meng Yue-Dong, Ren Zhao-Xing, Shu Xing-Sheng. Characterization of ZrN films deposited by ICP enhanced RF magnetron sputtering. Acta Physica Sinica, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [13] Xin Ping, Sun Cheng-Wei, Qin Fu-Wen, Wen Sheng-Ping, Zhang Qing-Yu. Room-temperature photoluminescence of ZnO/MgO multiple quantum wells deposited by reactive magnetron sputtering. Acta Physica Sinica, 2007, 56(2): 1082-1087. doi: 10.7498/aps.56.1082
    [14] The effect of temperature of substrate and oxygen partial pressure on V2O5 films fabricated by magnetron sputtering. Acta Physica Sinica, 2007, 56(12): 7255-7261. doi: 10.7498/aps.56.7255
    [15] Nano-β-FeSi2/a-Si multi-layered structure prepared by magnetron sputtering. Acta Physica Sinica, 2007, 56(12): 7188-7194. doi: 10.7498/aps.56.7188
    [16] Liu Zhi-Wen, Gu Jian-Feng, Sun Cheng-Wei, Zhang Qing-Yu. Study on nucleation and dynamic scaling of morphological evolution of ZnO film deposition by reactive magnetron sputtering. Acta Physica Sinica, 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [17] Ding Wan-Yu, Xu Jun, Li Yan-Qin, Piao Yong, Gao Peng, Deng Xin-Lü, Dong Chuang. Characterization of silicon nitride films prepared by MW-ECR magnetron sputtering. Acta Physica Sinica, 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [18] Zhou Xiao-Li, Du Pi-Yi. CaCu33Ti44O1212 films prepared by magnetron s puttering. Acta Physica Sinica, 2005, 54(4): 1809-1813. doi: 10.7498/aps.54.1809
    [19] Mu Zong-Xin, Li Guo-Qing, Qin Fu-Wen, Huang Kai-Yu, Che De-Liang. The model of the magnetic mirror effect in the unbalanced magnetron sputtering ion beams. Acta Physica Sinica, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [20] Xie Da-Tao, Zhao-Xie, Wang Li-Fang, Zhu Feng, Quan Sheng-Wen, Meng Tie-Jun, Zhang Bao-Cheng, Chen Jia-Er. . Acta Physica Sinica, 2002, 51(6): 1377-1382. doi: 10.7498/aps.51.1377
Metrics
  • Abstract views:  4577
  • PDF Downloads:  928
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2013
  • Accepted Date:  22 October 2013
  • Published Online:  05 February 2014

/

返回文章
返回