Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of boron nanowires using AuPd nanoparticles as catalyst and their field emission behavios

Yang Xiu-Qing Hu Yi Zhang Jing-Lu Wang Yan-Qiu Pei Chun-Mei Liu Fei

Citation:

Preparation of boron nanowires using AuPd nanoparticles as catalyst and their field emission behavios

Yang Xiu-Qing, Hu Yi, Zhang Jing-Lu, Wang Yan-Qiu, Pei Chun-Mei, Liu Fei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Large-area boron nanowires are successfully prepared by chemical vapor deposition using different compositions of AuPd bimetal nanoparticles as catalysts. The lengths of the boron nanowires are in a range of 5–10 μm and their average diameter is 50 nm. Structural and morphology analysis indicate that these nanowires are single crystalline with a β-rhombohedral structure. The diameters of nanowires gradually decrease with the increase of the concentration of Pd in bimetal nanoparticles. Field emission results show that the field emission properties of boron nanowires can be tuned through using different diameters and densities of boron nanowires.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50872147).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    de Heer W A, Chatelain A, Ugarte D 1995 Science 270 1179

    [3]

    Hu J T, Wang T R, Lieber C M 1999 Acc. Chem. Res. 32 435

    [4]

    Wang Z L 2003 Adv. Mater. 15 432

    [5]

    Lu J G, Chang P C, Fan Z Y 2006 Mater. Sci. Eng. R 52 49

    [6]

    Quandt A, Boustani I 2005 Chem. Phys. Chem. 6 2001

    [7]

    Wu J Z, Yun S H, Dibos A, Kim D K, Tidrow M 2003 Microelectronics J. 34 463

    [8]

    Wu Y Y, Messer B, Yang P D 2001 Adv. Mater. 13 1487

    [9]

    Otten C J, Lourie O R, Yu M F, Cowley J M, Dyer M J, Ruoff R S, Buhro W E 2002 J. Am. Chem. Soc. 124 4564

    [10]

    Franz R, Werheit H 1989 Europhys. Lett. 9 145

    [11]

    Boustani I, Quandt A, Herna'ndez E, Rubio A 1999 J. Chem. Phys. 110 3176

    [12]

    Tang H, Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501

    [13]

    Liu F, Shen C M, Su Z J, Ding X L, Deng S Z, Chen J, Xu N S, Gao H J 2010 J. Mater. Chem. 20 2197

    [14]

    Tian J F, Xu Z C, Shen C M, Liu F, Xu N S, Gao H J 2010 Nanoscale 2 1375

    [15]

    Wang D W, Lu J G, Otten C J, Buhro W E 2003 Appl. Phys. Lett. 83 5280

    [16]

    Cao L M, Zhang Z, Sun L L, He M, Wang Y Q, Li Y C, Zhang X Y, Li G, Zhang J, Wang W K 2001 Adv. Mater. 13 1701

    [17]

    Kirihara K, Wang Z, Kawaguchi K, Shimizu Y, Sasaki T, Koshizaki N, Sogac K, Kimura K 2005 Appl. Phys. Lett. 86 212101

    [18]

    Liu F, Tian J F, Bao L H, Yang T Z, Shen C M, Xu N S, Gao H J 2008 Adv. Mater. 20 2609

    [19]

    Tian J F, Cai J M, Hui C, Zhang C D, Bao L H, Gao M, Shen C M, Gao H J 2008 Appl. Phys. Lett. 93 122105

    [20]

    Bao L H, Li C, Tian Y, Tian J F, Hui C, Wang X J, Shen C M, Gao H J 2008 Chin. Phys. B 17 4585

    [21]

    Wang X J, Tian J F, Yang T Z, Bao L H, Hui C, Shen C M, Gao H J 2007 Adv. Mater. 19 4480

    [22]

    Bao L H, Li C, Tian Y, Tian J F, Hui C, Wang X J, Shen C M, Gao H J 2008 Chin. Phys. B 17 4247

    [23]

    Wang X J, Tian J F, Bao L H, Yang T Z, Hui C, Liu F, Shen C M, Xu N S, Gao H J 2008 Chin. Phys. B 17 3827

    [24]

    Li C, Tian Y, Wang D K, Shi X Z, Hui C, Shen C M, Gao H J 2011 Chin. Phys. B 20 037903

    [25]

    Qian W, Liu T, Wang Z, Yu H, Li Z, Wei F, Luo G 2003 Carbon 41 2487

    [26]

    Tsoufis T, Xidas P, Jankovic L, Gournis D, Saranti A, Bakas T, Karakassides M A 2007 Diamond Rela ted Mater. 16 155

    [27]

    Reyhani A, Mortazavi S Z, Akhavan O, Moshfegh A Z, Lahooti S 2007 Appl. Surf. Sci. 253 8458

    [28]

    Mortazavi S Z, Reyhani A, Irajizad A 2008 Appl. Sur. Sci. 254 6416

    [29]

    Khan Z H, Islam S S, Kung S C, Perng T P, Khan S, Tripathi K N, Agarwal M, Zulfequar M, Husain M 2006 Physica B 373 317

    [30]

    Chen C M, Dai Y M, Huang J G, Jehng J M 2006 Carbon 44 1808

    [31]

    Huang Z P, Wang D Z, Wen J G, Sennett M, Gibson H, Ren Z F 2002 Appl. Phys. A 74 387

    [32]

    Tian Y, Shen C M, Li C, Shi X Z, Huang Y, Gao H J 2011 Nano Res. 4 780

    [33]

    Scott R W J, Wilson O M, Oh S K, Kenik E A, Crooks R M 2004 J. Am. Chem. Soc. 126 15583

    [34]

    Hou W B, Dehm N A, Scott R W J 2008 J. Catal. 253 22

    [35]

    Jiang J H, Kucernak A 2009 Electrochim. Acta 54 4545

    [36]

    Shen C M, Hui C, Yang T Z, Xiao C W, Tian J F, Bao L H, Chen S T, Ding H, Gao H J 2008 Chem. Mater. 20 6939

    [37]

    Chen B, Wu P 2005 Carbon 43 3172

    [38]

    Hart A J, Slocum A H, Royer L 2006 Carbon 44 348

    [39]

    Liu Z Q, Pan Z W, Sun L F, Tang D S, Zhou W Y, Wang G, Qian L X, Xie S S 2000 J. Phys. Chem. Solids 61 1171

    [40]

    Moshfegh A Z 2009 J. Phys. D: Appl. Phys. 42 233001

    [41]

    JCPDS-International Center for Diffraction Data, PCPDFWIN, v.2.1, 2000

    [42]

    Stratton R 1955 Proc. Phys. Soc. B 68 746

    [43]

    Fowler R H, Nordheim L 1928 Roc. Roy. Soc. London A 119 173

    [44]

    Li S Q, Liang Y X, Wang T H 2006 Appl. Phys. Lett. 88 053107

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    de Heer W A, Chatelain A, Ugarte D 1995 Science 270 1179

    [3]

    Hu J T, Wang T R, Lieber C M 1999 Acc. Chem. Res. 32 435

    [4]

    Wang Z L 2003 Adv. Mater. 15 432

    [5]

    Lu J G, Chang P C, Fan Z Y 2006 Mater. Sci. Eng. R 52 49

    [6]

    Quandt A, Boustani I 2005 Chem. Phys. Chem. 6 2001

    [7]

    Wu J Z, Yun S H, Dibos A, Kim D K, Tidrow M 2003 Microelectronics J. 34 463

    [8]

    Wu Y Y, Messer B, Yang P D 2001 Adv. Mater. 13 1487

    [9]

    Otten C J, Lourie O R, Yu M F, Cowley J M, Dyer M J, Ruoff R S, Buhro W E 2002 J. Am. Chem. Soc. 124 4564

    [10]

    Franz R, Werheit H 1989 Europhys. Lett. 9 145

    [11]

    Boustani I, Quandt A, Herna'ndez E, Rubio A 1999 J. Chem. Phys. 110 3176

    [12]

    Tang H, Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501

    [13]

    Liu F, Shen C M, Su Z J, Ding X L, Deng S Z, Chen J, Xu N S, Gao H J 2010 J. Mater. Chem. 20 2197

    [14]

    Tian J F, Xu Z C, Shen C M, Liu F, Xu N S, Gao H J 2010 Nanoscale 2 1375

    [15]

    Wang D W, Lu J G, Otten C J, Buhro W E 2003 Appl. Phys. Lett. 83 5280

    [16]

    Cao L M, Zhang Z, Sun L L, He M, Wang Y Q, Li Y C, Zhang X Y, Li G, Zhang J, Wang W K 2001 Adv. Mater. 13 1701

    [17]

    Kirihara K, Wang Z, Kawaguchi K, Shimizu Y, Sasaki T, Koshizaki N, Sogac K, Kimura K 2005 Appl. Phys. Lett. 86 212101

    [18]

    Liu F, Tian J F, Bao L H, Yang T Z, Shen C M, Xu N S, Gao H J 2008 Adv. Mater. 20 2609

    [19]

    Tian J F, Cai J M, Hui C, Zhang C D, Bao L H, Gao M, Shen C M, Gao H J 2008 Appl. Phys. Lett. 93 122105

    [20]

    Bao L H, Li C, Tian Y, Tian J F, Hui C, Wang X J, Shen C M, Gao H J 2008 Chin. Phys. B 17 4585

    [21]

    Wang X J, Tian J F, Yang T Z, Bao L H, Hui C, Shen C M, Gao H J 2007 Adv. Mater. 19 4480

    [22]

    Bao L H, Li C, Tian Y, Tian J F, Hui C, Wang X J, Shen C M, Gao H J 2008 Chin. Phys. B 17 4247

    [23]

    Wang X J, Tian J F, Bao L H, Yang T Z, Hui C, Liu F, Shen C M, Xu N S, Gao H J 2008 Chin. Phys. B 17 3827

    [24]

    Li C, Tian Y, Wang D K, Shi X Z, Hui C, Shen C M, Gao H J 2011 Chin. Phys. B 20 037903

    [25]

    Qian W, Liu T, Wang Z, Yu H, Li Z, Wei F, Luo G 2003 Carbon 41 2487

    [26]

    Tsoufis T, Xidas P, Jankovic L, Gournis D, Saranti A, Bakas T, Karakassides M A 2007 Diamond Rela ted Mater. 16 155

    [27]

    Reyhani A, Mortazavi S Z, Akhavan O, Moshfegh A Z, Lahooti S 2007 Appl. Surf. Sci. 253 8458

    [28]

    Mortazavi S Z, Reyhani A, Irajizad A 2008 Appl. Sur. Sci. 254 6416

    [29]

    Khan Z H, Islam S S, Kung S C, Perng T P, Khan S, Tripathi K N, Agarwal M, Zulfequar M, Husain M 2006 Physica B 373 317

    [30]

    Chen C M, Dai Y M, Huang J G, Jehng J M 2006 Carbon 44 1808

    [31]

    Huang Z P, Wang D Z, Wen J G, Sennett M, Gibson H, Ren Z F 2002 Appl. Phys. A 74 387

    [32]

    Tian Y, Shen C M, Li C, Shi X Z, Huang Y, Gao H J 2011 Nano Res. 4 780

    [33]

    Scott R W J, Wilson O M, Oh S K, Kenik E A, Crooks R M 2004 J. Am. Chem. Soc. 126 15583

    [34]

    Hou W B, Dehm N A, Scott R W J 2008 J. Catal. 253 22

    [35]

    Jiang J H, Kucernak A 2009 Electrochim. Acta 54 4545

    [36]

    Shen C M, Hui C, Yang T Z, Xiao C W, Tian J F, Bao L H, Chen S T, Ding H, Gao H J 2008 Chem. Mater. 20 6939

    [37]

    Chen B, Wu P 2005 Carbon 43 3172

    [38]

    Hart A J, Slocum A H, Royer L 2006 Carbon 44 348

    [39]

    Liu Z Q, Pan Z W, Sun L F, Tang D S, Zhou W Y, Wang G, Qian L X, Xie S S 2000 J. Phys. Chem. Solids 61 1171

    [40]

    Moshfegh A Z 2009 J. Phys. D: Appl. Phys. 42 233001

    [41]

    JCPDS-International Center for Diffraction Data, PCPDFWIN, v.2.1, 2000

    [42]

    Stratton R 1955 Proc. Phys. Soc. B 68 746

    [43]

    Fowler R H, Nordheim L 1928 Roc. Roy. Soc. London A 119 173

    [44]

    Li S Q, Liang Y X, Wang T H 2006 Appl. Phys. Lett. 88 053107

  • [1] Liu Huai-Yuan, Xiao Jian-Fei, Lü Zhao-Zheng, Lü Li, Qu Fan-Ming. Growth of Bi2O2Se nanowires and their superconducting quantum interference devices. Acta Physica Sinica, 2024, 73(4): 047803. doi: 10.7498/aps.73.20231600
    [2] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [3] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [4] Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin. Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures. Acta Physica Sinica, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [5] Feng Qiu-Ju, Shi Bo, Li Yun-Zheng, Wang De-Yu, Gao Chong, Dong Zeng-Jie, Xie Jin-Zhu, Liang Hong-Wei. Fabrication and properties of non-balance electric bridge gas sensor based on a single Sb doped ZnO microwire. Acta Physica Sinica, 2020, 69(3): 038102. doi: 10.7498/aps.69.20191530
    [6] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [7] Wang Bi-Ben, Zhu Ke, Wang Qiang. Structures and photoluminescence properties of Se and SeMo2 nanoflakes. Acta Physica Sinica, 2016, 65(3): 038102. doi: 10.7498/aps.65.038102
    [8] Ma Li-An, Zheng Yong-An, Wei Zhao-Hui, Hu Li-Qin, Guo Tai-Liang. Effect of synthesis temperature and N2/O2 flow on morphology and field emission property of SnO2 nanowires. Acta Physica Sinica, 2015, 64(23): 237901. doi: 10.7498/aps.64.237901
    [9] Feng Qiu-Ju, Xu Rui-Zhuo, Guo Hui-Ying, Xu Kun, Li Rong, Tao Peng-Cheng, Liang Hong-Wei, Liu Jia-Yuan, Mei Yi-Ying. Influences of the substrate position on the morphology and characterization of phosphorus doped ZnO nanomaterial. Acta Physica Sinica, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [10] Hu Xiao-Ying, Wang Shu-Min, Pei Yan-Hui, Tian Hong-Wei, Zhu Pin-Wen. One-step synthesis of a carbon nano sheet-scarbon nanotubes composite and its field emission properties. Acta Physica Sinica, 2013, 62(3): 038101. doi: 10.7498/aps.62.038101
    [11] Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui, Zhang Fan, Luo Jun. Synthesis and characterization of Sb2Te3 nanostructures. Acta Physica Sinica, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [12] Vertical growth of conical carbon cone with carbon nanotube core on graphite substrate. Acta Physica Sinica, 2007, 56(12): 7165-7169. doi: 10.7498/aps.56.7165
    [13] Han Dao-Li, Zhao Yuan-Li, Zhao Hai-Bo, Song Tian-Fu, Liang Er-Jun. Growth of well-aligned carbon nanotubes arrays by chemical vapor deposition. Acta Physica Sinica, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [14] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [15] Wang Bi-Ben, Xu Xing-Zi, Zhang Bing. Growth of carbon nanotips by plasma-enhanced hot filament chemical vapor deposition. Acta Physica Sinica, 2006, 55(2): 941-946. doi: 10.7498/aps.55.941
    [16] Zhang Ping, Li Ping-Jian, Hou Shi-Min, Zhang Qi-Feng, Wu Jin-Lei. Fabrication of carbon nanotube rings. Acta Physica Sinica, 2005, 54(8): 3734-3739. doi: 10.7498/aps.54.3734
    [17] Li Hai-Jun, Gu Chang-Zhi, Dou Yan, Li Jun-Jie. Field emission from individual vertically carbon nanofibers. Acta Physica Sinica, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [18] Zeng Xiang-Bo, Liao Xian-Bo, Wang Bo, Diao Hong-Wei, Dai Song-Tao, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition. Acta Physica Sinica, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [19] Yan Xiao-Qin, Liu Zu-Qin, Tang Dong-Sheng, Ci Li-Jie, Liu Dong-Fang, Zhou Zhen-Ping, Liang Ying-Xin, Yuan Hua-Jun, Zhou Wei-Ya, Wang Gang. Effects of substrates on silicon oxide nanowires growth by thermal chemical vapor deposition. Acta Physica Sinica, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [20] CHEN XIAO-HUA, WU GUO-TAO, DENG FU-MING, WANG JIAN-XIONG, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, PENG JING-CUI, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
Metrics
  • Abstract views:  5143
  • PDF Downloads:  408
  • Cited By: 0
Publishing process
  • Received Date:  25 September 2013
  • Accepted Date:  30 October 2013
  • Published Online:  05 February 2014

/

返回文章
返回