Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch

Ning Cheng Feng Zhi-Xing Xue Chuang

Citation:

Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch

Ning Cheng, Feng Zhi-Xing, Xue Chuang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The applications of Z-pinch are realized through dynamic hohlraum driven by Z-pinch, in which a uniform and symmetrical radiation field may be produced for ablating implosion of the inertial confinement fusion (ICF) capsule, and the radiation sources may also be created for heating and backlighting the samples in opacity measurement experiments. The radiation field is essentially related to driven current, hohlraum configuration and material. In physics it is determined by energy transfer in the hohlraum. For rapidly obtaining the knowledge about the primary energy transfer chracteristics in the hohlraum, and its trends of variation in the configuration, linear mass of the load, and the driven current, the simplified model is used to simulate the dynamic hohlraum implosion. The obtained implosion kinetic energy of the cylindrical foam accords well with the kinetic energy obtained from a one-dimensional magneto radiation hydrodynamics simulation of Z-pinch-driven dynamic hohlraum. In the dynamic hohlraum for ICF the kinetic energy loss is important for the radiation field formation when the imploding wire-array plasma collides with the cylindrical foam, while ones for radiation source the kinetic energy loss and for the final implosion kinetic energy of the foam are both important. The maximum implosion kinetic energy of cylindrical foam is directly proportional to the square of the peak current, while the kinetic energy loss increases with the mass of cylindrical foam increasing. The mass energy density in the foam tends to increase, and in turn the radiation power is enhanced when the rise time of the current turns longer.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11135007).
    [1]

    Spielman R B, Deeney C, Chandler G A, et al. 1998 Phys. Plasmas 5 2105

    [2]

    Lebedev S V, Aliaga-Rossel R, Chittenden J P, Mitchell I H, Dangor A E, Haines M G, Worley J F 1998 Phys. Plasmas 5 3366

    [3]

    Lebedev S V, Beg F N, Bland S N, Chittenden J P, Dangor A E, Haines M G, Kwek K H, Pikuz S A, Shelkovenkob T A 2001 Phys. Plasmas 8 3734

    [4]

    Stygar W A, Ives H C, Fehl D L, et al. 2004 Phys. Rev. E 69 046403

    [5]

    Cuneo M E, Waisman E M, Lebedev S V, et al. 2005 Phys. Rev. E 71 046406

    [6]

    Chittenden J P, Lebedev S V, Bland S N, Ruiz-Camacho J, Beg F N, Haines M G 2001 Laser and Particle Beams 19 323

    [7]

    Ning C, Ding N, Yang Z H 2007 Acta Phys. Sin. 56 338 (in Chinese) [宁成, 丁宁, 杨震华 2007 物理学报 56 338]

    [8]

    Qiu A C, Kuai B, Wang L P, Wu G, Cong P T 2008 High Power Laser and Particle Beams 20 1761 (in Chinese) [邱爱慈, 蒯斌, 王亮平, 吴刚, 丛培天 2008 强激光与粒子束 20 1761]

    [9]

    Nash T J, Derzon M S, Chandler G A, et al. 1999 Phys. Plasmas 6 2023

    [10]

    Slutz S A, Douglas M R, Lash J S, Vesey R A, Chandler G A, Nash T J, Derzon M S 2001 Phys. Plasmas 8 1673

    [11]

    Bailey J E, Chandler G A, Slutz S A, et al. 2004 Phys. Rev. Lett. 92 085002

    [12]

    Slutz S A, Peterson K J, Vesey R A, Lemke R W, Bailey J E, Varnum W, Ruiz C L, Cooper G W, Chandler G A, Rochau G A, Mehlhorn T A 2006 Phys. Plasmas 13 102701

    [13]

    Jiang S Q, Ning J M, Chen F X, Ye F, Xue F B, Li L B, Yang J L, Chen J C, Zhou L, Qin Y, Li Z H, Xu R K, Xu Z P 2013 Acta Phys. Sin. 62 155203 (in Chinese) [蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平 2013 物理学报 62 155203]

    [14]

    Stygar W A, Cuneo M E, Headley D I, Ives H C, Leeper R J, Mazarakis M G, Olson C L, Porter J L, Wagoner T C, Woodworth J R 2007 Phys. Rev. Special Topics-Accelerators and Beams 10 030401

    [15]

    Zou W K, Wang M, Chen L, Zhou L J, Guo F, Xie W P, Deng J J 2013 High Power Laser and Particle Beams 25 2487 (in Chinese) [邹文康, 王勐, 陈林, 周良骥, 郭帆, 谢卫平, 邓建军 2013 强激光与粒子束 25 2487]

    [16]

    Lindl J D 1995 Phys. Plasmas 2 3933

    [17]

    Leeper R J, Alberts T E, Asay J R, et al. 1999 Nucl. Fusion 39 1283

    [18]

    Bailey J E, Rochau G A, Iglesias C A, Abdallah Jr J, MacFarlane J J, Golovkin I, Wang P, Mancini R C, Lake P W, Moore T C, Bump M, Garcia O, Mazevet S 2007 Phys. Rev. Lett. 99 265002

    [19]

    Ning C, Yang Z H, Ding N 2003 High Power Laser and Particle Beams 15 1200 (in Chinese) [宁成, 杨震华, 丁宁 2003 强激光与粒子束 15 1200]

    [20]

    Ning C 2001 Nuclear Fusion and Plasma Phys. 21 43 (in Chinese) [宁成 2001 核聚变与等离子体物理 21 43]

  • [1]

    Spielman R B, Deeney C, Chandler G A, et al. 1998 Phys. Plasmas 5 2105

    [2]

    Lebedev S V, Aliaga-Rossel R, Chittenden J P, Mitchell I H, Dangor A E, Haines M G, Worley J F 1998 Phys. Plasmas 5 3366

    [3]

    Lebedev S V, Beg F N, Bland S N, Chittenden J P, Dangor A E, Haines M G, Kwek K H, Pikuz S A, Shelkovenkob T A 2001 Phys. Plasmas 8 3734

    [4]

    Stygar W A, Ives H C, Fehl D L, et al. 2004 Phys. Rev. E 69 046403

    [5]

    Cuneo M E, Waisman E M, Lebedev S V, et al. 2005 Phys. Rev. E 71 046406

    [6]

    Chittenden J P, Lebedev S V, Bland S N, Ruiz-Camacho J, Beg F N, Haines M G 2001 Laser and Particle Beams 19 323

    [7]

    Ning C, Ding N, Yang Z H 2007 Acta Phys. Sin. 56 338 (in Chinese) [宁成, 丁宁, 杨震华 2007 物理学报 56 338]

    [8]

    Qiu A C, Kuai B, Wang L P, Wu G, Cong P T 2008 High Power Laser and Particle Beams 20 1761 (in Chinese) [邱爱慈, 蒯斌, 王亮平, 吴刚, 丛培天 2008 强激光与粒子束 20 1761]

    [9]

    Nash T J, Derzon M S, Chandler G A, et al. 1999 Phys. Plasmas 6 2023

    [10]

    Slutz S A, Douglas M R, Lash J S, Vesey R A, Chandler G A, Nash T J, Derzon M S 2001 Phys. Plasmas 8 1673

    [11]

    Bailey J E, Chandler G A, Slutz S A, et al. 2004 Phys. Rev. Lett. 92 085002

    [12]

    Slutz S A, Peterson K J, Vesey R A, Lemke R W, Bailey J E, Varnum W, Ruiz C L, Cooper G W, Chandler G A, Rochau G A, Mehlhorn T A 2006 Phys. Plasmas 13 102701

    [13]

    Jiang S Q, Ning J M, Chen F X, Ye F, Xue F B, Li L B, Yang J L, Chen J C, Zhou L, Qin Y, Li Z H, Xu R K, Xu Z P 2013 Acta Phys. Sin. 62 155203 (in Chinese) [蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平 2013 物理学报 62 155203]

    [14]

    Stygar W A, Cuneo M E, Headley D I, Ives H C, Leeper R J, Mazarakis M G, Olson C L, Porter J L, Wagoner T C, Woodworth J R 2007 Phys. Rev. Special Topics-Accelerators and Beams 10 030401

    [15]

    Zou W K, Wang M, Chen L, Zhou L J, Guo F, Xie W P, Deng J J 2013 High Power Laser and Particle Beams 25 2487 (in Chinese) [邹文康, 王勐, 陈林, 周良骥, 郭帆, 谢卫平, 邓建军 2013 强激光与粒子束 25 2487]

    [16]

    Lindl J D 1995 Phys. Plasmas 2 3933

    [17]

    Leeper R J, Alberts T E, Asay J R, et al. 1999 Nucl. Fusion 39 1283

    [18]

    Bailey J E, Rochau G A, Iglesias C A, Abdallah Jr J, MacFarlane J J, Golovkin I, Wang P, Mancini R C, Lake P W, Moore T C, Bump M, Garcia O, Mazevet S 2007 Phys. Rev. Lett. 99 265002

    [19]

    Ning C, Yang Z H, Ding N 2003 High Power Laser and Particle Beams 15 1200 (in Chinese) [宁成, 杨震华, 丁宁 2003 强激光与粒子束 15 1200]

    [20]

    Ning C 2001 Nuclear Fusion and Plasma Phys. 21 43 (in Chinese) [宁成 2001 核聚变与等离子体物理 21 43]

  • [1] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [2] Xiao De-Long, Dai Zi-Huan, Sun Shun-Kai, Ding Ning, Zhang Yang, Wu Ji-Ming, Yin Li, Shu Xiao-Jian. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion. Acta Physica Sinica, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [3] Qin Ya-Qiang, Chen Rui-Yun, Shi Ying, Zhou Hai-Tao, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. The role of chain conformation in energy transfer properties of single conjugated polymer molecule. Acta Physica Sinica, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [4] Zhang Yang, Sun Shun-Kai, Ding Ning, Li Zheng-Hong, Shu Xiao-Jian. Basic dynamic and scale study of quasi-spherical Z-pinch implosion. Acta Physica Sinica, 2017, 66(10): 105203. doi: 10.7498/aps.66.105203
    [5] Wu Fu-Yuan, Chu Yan-Yun, Ye Fan, Li Zheng-Hong, Yang Jian-Lun, Rafael Ramis, Wang Zhen, Qi Jian-Min, Zhou Lin, Liang Chuan. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI. Acta Physica Sinica, 2017, 66(21): 215201. doi: 10.7498/aps.66.215201
    [6] Chen Zhong-Wang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z. Acta Physica Sinica, 2017, 66(12): 125202. doi: 10.7498/aps.66.125202
    [7] Meng Shi-Jian, Huang Zhan-Chang, Ning Jia-Min, Hu Qing-Yuan, Ye Fan, Qin Yi, Xu Ze-Ping, Xu Rong-Kun. Shock X-ray emission image measurement in Z-pinch dynamic hohlraum. Acta Physica Sinica, 2016, 65(7): 075201. doi: 10.7498/aps.65.075201
    [8] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [9] Xiao De-Long, Sun Shun-Kai, Xue Chuang, Zhang Yang, Ding Ning. Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation. Acta Physica Sinica, 2015, 64(23): 235203. doi: 10.7498/aps.64.235203
    [10] He Yue-Di, Xu Zheng, Zhao Su-Ling, Liu Zhi-Min, Gao Song, Xu Xu-Rong. Electroluminescent energy transfer of hybrid quantum dotsdevice. Acta Physica Sinica, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [11] Dan Jia-Kun, Ren Xiao-Dong, Huang Xian-Bin, Zhang Si-Qun, Zhou Shao-Tong, Duan Shu-Chao, Ouyang Kai, Cai Hong-Chun, Wei Bing, Ji Ce, He An, Xia Ming-He, Feng Shu-Ping, Wang Meng, Xie Wei-Ping. Electromagnetic pulse emission produced by Z pinch implosions. Acta Physica Sinica, 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [12] Ye Fan, Xue Fei-Biao, Chu Yan-Yun, Si Fen-Ni, Hu Qing-Yuan, Ning Jia-Min, Zhou Lin, Yang Jian-Lun, Xu Rong-Kun, Li Zheng-Hong, Xu Ze-Ping. Experimental study on current division of nested wire array Z pinches. Acta Physica Sinica, 2013, 62(17): 175203. doi: 10.7498/aps.62.175203
    [13] Chen Fa-Xin, Feng Jing-Hua, Li Lin-Bo, Yang Jian-Lun, Zhou Lin, Xu Rong-Kun, Xu Ze-Ping. Study of Z-pinch dynamic hohlraum shadowgraphy. Acta Physica Sinica, 2013, 62(4): 045204. doi: 10.7498/aps.62.045204
    [14] Zhang Fa-Qiang, Wang Zhen, Xu Ze-Ping, Jiang Shi-Lun, V. P. Smirnov, Ning Jia-Min, Li Lin-Bo, Zhou Xiu-Wen, E. V. Grabovsky, G. M. Oleynic, V. V. Alexandrov, Ding Ning, Xu Rong-Kun, Li Zheng-Hong, Yang Jian-Lun. New results of Sino-Russian joint Z-pinch experiments. Acta Physica Sinica, 2011, 60(4): 045208. doi: 10.7498/aps.60.045208
    [15] Xu Deng, Ye Li-Hua, Cui Yi-Ping, Xi Jun, Li Li, Wang Qiong. Study of photoluminescence and energy transfer properties of an organic dye salt doped thin films. Acta Physica Sinica, 2008, 57(5): 3267-3270. doi: 10.7498/aps.57.3267
    [16] Wu Chun-Hong, Liu Peng-Yi, Hou Lin-Tao, Li Yan-Wu. The energy transfer in phosphorescent dye PtOEP doped organic molecule Alq. Acta Physica Sinica, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [17] Song Shu-Fang, Zhao De-Wei, Xu Zheng, Xu Xu-Rong. Energy transfer in organic quantum well structures. Acta Physica Sinica, 2007, 56(6): 3499-3503. doi: 10.7498/aps.56.3499
    [18] Zhang Peng, Zhou Yin-Hua, Liu Xiu-Fen, Tian Wen-Jing, Li Min, Zhang Guo. Study on the energy transfer and luminescent properties in PVK:DBVP blend system. Acta Physica Sinica, 2006, 55(10): 5494-5498. doi: 10.7498/aps.55.5494
    [19] Ning Cheng, Li Zheng-Hong, Hua Xin-Sheng, Xu Rong-Kun, Peng Xian-Jue, Xu Ze-Ping, Yang Jian-Lun, Guo Cun, Jiang Shi-Lun, Feng Shu-Ping, Yang Li-Bing, Yan Cheng-Li, Song Feng-Jun, V. P. Smirnov, Yu. G. Kalinin, A. S. Kingsep, A. S. Chernenko, E. V. Grabovsky. Experimental studies of Z-pinches of mixed wire array with aluminum and tungsten. Acta Physica Sinica, 2004, 53(7): 2244-2249. doi: 10.7498/aps.53.2244
    [20] Ning Cheng, Yang Zhen-Hua, Ding Ning. Studies on the mechanism of energy transformation in implosion processes of the Z-pinches. Acta Physica Sinica, 2003, 52(2): 415-420. doi: 10.7498/aps.52.415
Metrics
  • Abstract views:  6225
  • PDF Downloads:  634
  • Cited By: 0
Publishing process
  • Received Date:  09 January 2014
  • Accepted Date:  13 February 2014
  • Published Online:  05 June 2014

/

返回文章
返回