Abstract The fluorescence blinking characteristics of the single CdSe/ZnS core/shell quantum dots (QDs) absorbed on the cover glass surface, indium-tin oxide (ITO) nanoparticles, and polymethyl methacrylate (PMMA) film surface are measured by a laser scanning confocal fluorescence microscopy. It is found that all the distributions of bright state duration time of QDs on the three different interfaces can be described by a truncated power law P(t)∝ t-αexp(-t/μ). The statistical on-time durations of single QDs absorbed on the ITO nanoparticles is shorter than on the glass. In addition, the on-time duration with single QDs absorbed on the PMMA is longer than on the others. These differences can be attributed to the diverse interfacial electron transfers between QD and different materials.
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2012CB921603, 2010CB923103), the National High Technology Research and Development Program of China (Grant No. 2011AA010801), the National Natural Science Foundation of China (Grant Nos. 11374196, 11174187, 10934004, 11204166), the International Science and Technology Cooperation Program of Ministry of Science and Technology, China (Grant No. 2001DFA12490), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 61121064), the Cheung Kong Scholars and Innovative Research Team Program in University of Ministry of Education, China (Grant No. IRT13076), and the Specialized Research Foundation for the Doctoral Program of Institution of Higher Education of China (Grant No. 20121401120016).
Corresponding Authors:
肖连团
E-mail: xlt@sxu.edu.cn
Cite this article:
Wu Jian-Fang,Zhang Guo-Feng,Chen Rui-Yun et al. Influence of interfacial electron transfer on fluorescence blinking of quantum dots. Acta Phys. Sin, 2014, 63(16): 167302.
Medintz I L, Uyeda H T, Goldman E R, Mattoussi H 2005 Nat. Mater. 4 435
[2]
Moreau E, Robert I, Gérard J M, Abram I, Manin L, Thierry-Mieg V 2001 Appl. Phys. Lett. 79 2865
[3]
Ropp C, Cummins Z, Nah S, Fourkas J T, Shapiro B, Waks E 2013 Nat. Commun. 4 1447
[4]
Colvin V L, Schlamp M C, Alivisatos A P 1994 Nature 370 354
[5]
Bae W K, Park Y S, Lim J, Lee D, Padilha L A, McDaniel H, Robel I, Lee C H, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2661
[6]
Liu B Z, Li R F, Song L Y, Hu L, Zhang B P, Chen Y Y, Wu J Z, Bi G, Wang M, Wu H Z 2013 Acta Phys. Sin. 62 158504 (in Chinese) [刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢 2013 物理学报 62 158504]
[7]
Li X K, Liang D C, Jin P, An Q, Wei H, Wu J, Wang Z G 2012 Chin. Phys. B 21 028102
[8]
Samadpour M, Iraji zad A, Molaei M 2014 Chin. Phys. B 23 047302
[9]
Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425
[10]
Jiang B Y, Zheng J B, Wang C F, Hao J, Cao C D 2012 Acta Phys. Sin. 61 138801 (in Chinese) [姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德 2012 物理学报 61 138801]
[11]
Han R C, Li Z H, Fan Y Y, Jiang Y Q 2013 J. Genet. Genomics. 40 583
[12]
Issac A, Jin S Y, Lian T Q 2008 J. Am. Chem. Soc. 130 11280
[13]
Jin S Y, Lian T Q 2009 Nano Lett. 9 2448
[14]
Krauss T D, O'Brien S, Brus L E 2001 J. Phys. Chem. B 105 1725
[15]
Wang S Y, Querner C, Emmons T, Drndic M, Crouch C H 2006 J. Phys. Chem. B 110 23221
[16]
Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2000 J. Chem. Phys. 112 3117
[17]
Shimizu K T, Neuhauser R G, Leatherdale C A, Empedocles S A, Woo W K, Bawendi M G 2001 Phys. Rev. B 63 205316
[18]
Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2001 J. Chem. Phys. 115 1028
[19]
Müller J, Lupton J M, Rogach A L, Feldmann J, Talapin D V, Weller H 2004 Appl. Phys. Lett. 85 381
[20]
Bharadwaj P, Novotny L 2011 Nano Lett. 11 2137
[21]
Jin S Y, Song N H, Lian T Q 2010 ACS Nano 4 1545
[22]
Jin S Y, Hsiang J C, Zhu H M, Song N H, Dickson R M, Lian T Q 2010 Chem. Sci. 1 519
[23]
Issac A, von Borczyskowski C, Cichos F 2005 Phys. Rev. B 71 161302
[24]
Chowdry A, Westgate C 1974 J. Phys. D: Appl. Phys. 7 713
[25]
Verberk R, van Oijen A M, Orrit M 2002 Phys. Rev. B 66 233202