Chaotic characteristic study of GIC in buried steel oil pipeline
Liang Zhi-Shan, Wang Peng, Hu Li-Hua, Zhang Ju-Qiu
College of Geophysics and Information Engineering, China University of Petroleum(Beijing), Beijing 102249, China
Abstract Variations of the geomagnetic field drive geomagnetically induced currents (GIC) in the buried steel pipelines, which may contribute to the pipeline corrosion and the pipeline network interfered by the solar wind and magnetic storm, are actually a complex nonlinear dynamical system. This paper shows that the induced current in the buried steel pipeline system has chaotic characteristics. To prove this, we first establish the lump-constant geomagnetic interference model based on the distributed source transmission line theory. Then we analyze this model by using Melnikov method and find out the condition under which the chaotic phenomenon will occur. In order to get a sufficient proof to validate the existence of chaos in pipelines, we also obtain the actual GIC time series by utilizing the measured data provided by national geomagnetic observatory and analyze its chaotic characteristics using multiple chaotic criteria. Analysis results of both the model and the measured data indicate that the pipeline's GICs have chaotic characteristics. This provides a theoretical basis for protecting pipeline from the effects of space weather.
Key words :
pipelines
magnetic storm
geomagnetically induced current (GIC)
Melnikov
Received: 2014-02-21
PACS:
05.45.-a
(Nonlinear dynamics and chaos)
91.25.Wb
(Geomagnetic induction)
93.85.Tf
(Oil prospecting, pipelines, and conduits)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51071176).
Corresponding Authors:
王鹏
E-mail: wangp1989@163.com
References
[1] Yang Y Q, Wang C J 2012 Acta Phys. Sin. 61 120507 (in Chinese)[杨亚强, 王参军 2012 物理学报 61 120507]
[2] Wu D, Zhu S Q 2007 Phys. Lett. A 363 202
[3] Luo X, Wu D, Zhu S 2012 Int. J. Mod. Phys. B 26 215006
[4] Rong H W, Wang X D, Xu W, Meng G 2003 Acta Phys. Sin. 52 2557 (in Chinese)[戎海武, 王向东, 徐伟, 孟光 2003 物理学报 52 2557]
[5] Shi P M, Ding X J, Han D Y 2014 Measurement 47540
[6] Rong H W, Wang X D, Meng G Xu W 2006 Appl. Math. Mech 27 1373
[7] Jin Y F, Xu W, Ma S J, Li W 2005 Acta Phys. Sin. 54 3480 (in Chinese)[靳艳飞, 徐伟, 马少娟, 李伟 2005 物理学报 54 3480]
[8] Jin Y F, Xu W, Li W, Ma S J 2005 Chinese Journal of Dynamics and Control 3 9
[9] Hao Y, Wu Z Q 2013 Acta Mech. Sin. 45 257
[10] Li B, Jin Y F 2013 Acta Phys. Sin 62 150503 (in Chinese)[李贝, 靳艳飞 2013 物理学报 62 150503]
[11] Zhou Y R 2011 Chin. Phys. B 20 010501
[12] Cao L, Liu L, Zhang L 2010 Acta Phys. Sin. 59 1494 (in Chinese)[曹力, 刘莉, 张立 2010 物理学报 59 1494]
[13] Jia Y, Yu S N, Li J R 2000 Phys. Rev. E 62 1869
[14] Zhou B C, Xu W 2008 Acta Phys. Sin. 57 2035 (in Chinese)[周丙常, 徐伟 2008 物理学报 57 2035]
[15] Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A 14 L453
[16] Du L C, Mei D C 2009 Chin. Phys. B 18 946
[17] Jing L J, Xu W, Yang X L 2007 Acta Phys. Sin. 56 25 (in Chinese)[宁丽娟, 徐伟, 杨晓丽 2007 物理学报 56 25]
[18] Zhang J J, Jin Y F 2011 Acta Phys. Sin. 60 12501 (in Chinese)[张静静, 靳艳飞 2011 物理学报 60 12501]
[19] Garrett K A, Dobson A D M, Kroschel J 2013 Agr. Forest Meteorol. 170 216
[20] Liu Y, Xie Y 2010 Acra Phys. Sin. 59 2147 (in Chinese)[刘勇, 谢勇 2010 物理学报 59 2147]
[1]
Yin Jiu-Li, Xing Qian-Qian, Tian Li-Xin. Complex dynamical behaviors of compact solitary waves in the perturbed mKdV equation [J]. Chin. Phys. B, 2014, 23(8): 080201.
[2]
Chen Ying, Fu Shi-Xiao, Xu Yu-Wang, Zhou Qing, Fan Di-Xia. Hydrodynamic characters of a near-wall circular cylinder oscillating in cross flow direction in steady current [J]. Acta Phys. Sin, 2013, 62(6): 064701.
[3]
Luo Xiao-Hua, He Wei, Wu Mu-Ying, Shao Ming-Zhu, Luo Shi-Yu. Crystalline undulator radiation and sub-harmonic bifurcation of system [J]. Chin. Phys. B, 2013, 22(6): 064210.
[4]
Hou Dong-Xiao, Zhao Hong-Xu, Liu Bin. Bifurcation and chaos in some relative rotation systems with Mathieu-Duffing oscillator [J]. Acta Phys. Sin, 2013, 62(23): 234501.
[5]
Liu Quan-Sheng, Yang Lian-Gui, Su Jie. Transient electroosmotic flow of general Jeffrey fluid between two micro-parallel plates [J]. Acta Phys. Sin, 2013, 62(14): 144702.
[6]
Xi Xiao-Jian, Wang Zhen, Sun Wei. Homoclinic orbits analysis of T chaotic system with periodic parametric perturbation [J]. Acta Phys. Sin, 2013, 62(13): 130507.
[7]
Zhang Shuai, Liu Wen-Qing, Zhang Yu-Jun, Ruan Jun, Kan Rui-Feng, You Kun, Yu Dian-Qiang, Dong Jin-Ting, Han Xiao-Lei. Research of quantitative remote sensing of natural gas pipeline leakage based on laser absorption spectroscopy [J]. Acta Phys. Sin, 2012, 61(5): 050701.
[8]
Shang Hui-Lin. Fractal eroded safe basins in a forced Holmes-Duffing system and its control by delayed velocity feedback [J]. Acta Phys. Sin, 2012, 61(18): 180506.
[9]
Chang Long, Jian Yong-Jun. Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates with high Zeta potential [J]. Acta Phys. Sin, 2012, 61(12): 124702.
[10]
Feng Jun, Xu Wei, Gu Ren-Cai, Di Gen-Hu. Melnikov chaos in Duffing-Rayleigh oscillator subjected to combined bounded noise and harmonic excitations [J]. Acta Phys. Sin, 2011, 60(9): 090507.
[11]
Di Gen-Hu, Xu Yong, Xu Wei, Gu Ren-Cai. Chaos for a class of complex epidemiological models [J]. Acta Phys. Sin, 2011, 60(2): 020504.
[12]
Luo Shi-Yu, Shao Ming-Zhu, Luo Xiao-Hua. The global bifurcation and chaotic behaviours for the crystalline undulator radiation [J]. Acta Phys. Sin, 2010, 59(4): 2685-2690.
[13]
Wang Wei, Zhang Qi-Chang, Wang Xue-Jiao. The application of the undetermined fundamental frequency for analyzing the critical value of chaos [J]. Acta Phys. Sin, 2009, 58(8): 5162-5168.
[14]
Ren Ming-Xing, Li Bang-Sheng, Yang Chuang, Fu Heng-Zhi. Simulation research on the law of flow of liquid metal in micro-channels [J]. Acta Phys. Sin, 2008, 57(8): 5063-5071.
[15]
Lei You-Ming, Xu Wei. Chaos control in the Josephson junction with a resonant harmonic excitation [J]. Acta Phys. Sin, 2008, 57(6): 3342-3352.