Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Constructal optimization of complex fin with convective heat transfer based on entransy dissipation rate minimization

Feng Hui-Jun Chen Lin-Gen Xie Zhi-Hui Sun Feng-Rui

Citation:

Constructal optimization of complex fin with convective heat transfer based on entransy dissipation rate minimization

Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the constructal theory, the constructal optimization of a complex fin is carried out by taking the minimum equivalent thermal resistance, which is defined according to entransy dissipation rate, as the optimization objective. Optimal constructal of the complex fin is obtained by tsking into consideration the entransy dissipation performance caused by heat conduction and heat convection. Comparisons between the optimal constructal with different shapes and optimization objectives of the fins are performed. Results show that there exist the optimal ratios of the height to the length of the elemental fin, central cavity and fin tip which lead to the triple minimum equivalent thermal resistance of the complex fin. By comparing the optimal constructal of the complex fin with that of the T-Y shaped fin, the structure of the complex fin will greatly improve its global heat transfer performance. When the heat transfer of the fin is two-dimensional and the root of the fin is broader, the more non-uniform the temperature at the fin root, the bigger difference of the optimal constructs the complex fin obtains, based on the minimizations of the equivalent thermal resistance and maximum thermal resistance. For the optimal design of the fin in pracuice, when the thermal safety of the fin is ensured, the constructal design scheme of the fin with minimum equivalent thermal resistance can be adopted to reduce temperature difference in the average heat transfer and improves the global heat transfer performance. This paper provides some guidelines for the optimal design of the complex fin from the point of view of heat transfer optimization.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51176203, 51356001).
    [1]

    Bejan A 1996 J. Adv. Transp. 30 85

    [2]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1–314

    [3]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1–516

    [4]

    Lorenzini G, Moretti S 2011 Fin Shape Thermal Optimization Using Bejan's Constructal Theory (USA: Morgan & Claypool Publishers) pp1–219

    [5]

    Chen L G 2012 Sci. China: Tech. Sci. 55 802

    [6]

    Bejan A 2013 Convection Heat Transfer (4th edition) (New Jersey: Wiley) pp1–605

    [7]

    Bejan A, Lorente S 2013 J. Appl. Phys. 113 151301

    [8]

    Bejan A 2014 Sci. Rep. 4 4017

    [9]

    Bejan A, Almogbel M 2000 Int. J. Heat Mass Transfer 43 2101

    [10]

    Lorenzini G, Rocha L A O 2006 Int. J. Heat Mass Transfer 49 4552

    [11]

    Lorenzini G, Rocha L A O 2009 Int. J. Heat Mass Transfer 52 1458

    [12]

    Lorenzini G, Correa R L 2011 Trans. ASME, J. Heat Transfer 133 081902

    [13]

    Xie Z H, Chen L G, Sun F R 2010 Sci. China: Tech. Sci. 53 2756

    [14]

    Lorenzini G, Moretti S 2014 Thermal Sci. 18 339

    [15]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [16]

    Li Z X, Guo Z Y 2010 Field Synergy Principle of Heat Convection Optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元2010 对流传热优化的场协同理论(北京: 科学出版社)第78–97页]

    [17]

    Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406

    [18]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [19]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [20]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese) [程雪涛, 梁新刚, 徐向华 2011 物理学报 60 060512]

    [21]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 物理学报 62 134401]

    [22]

    Zhao T, Chan Q 2013 Acta Phys. Sin. 62 234401 (in Chinese) [赵甜, 陈群 2013 物理学报 62 234401]

    [23]

    Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506

    [24]

    Sun C, Cheng X T, Liang X G 2014 Chin. Phys. B 23 050513

    [25]

    Cheng X T, Liang X G 2014 Int. J. Heat Mass Transfer 76 263

    [26]

    Feng H J, Chen L G, Xie Z H, Sun F R 2014 Int. Comm. Heat Mass Transfer 52 26

    [27]

    Tao Y B, He Y L, Liu Y K, Tao W Q 2014 Int. J. Heat Mass Transfer 77 695

    [28]

    Wu J, Guo Z Y 2014 Entropy 16 1089

    [29]

    Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124

    [30]

    Chen Q, Xu Y C, Hao J H 2014 Appl. Energy 113 982

    [31]

    Chen L G, Xiao Q H, Xie Z H, Sun F R 2012 Int. Comm. Heat Mass Transfer 39 1556

    [32]

    Xie Z H, Chen L G, Sun F R 2011 Sci. China: Tech. Sci. 54 1249

    [33]

    Chen L G, Xiao Q H, Xie Z H, Sun F R 2013 Int. J. Heat Mass Transfer 67 506

    [34]

    Xiao Q H, Chen L G, Xie Z H, Sun F R 2012 J. Engng. Thermophys. 33 1465 (in Chinese) [肖庆华, 陈林根, 谢志辉, 孙丰瑞 2012 工程热物理学报 33 1465]

    [35]

    Feng H J, Chen L G, Xie Z H, Sun F R J. Engng. Thermophys. in press

    [36]

    Xiao Q H, Chen L G, Sun F R 2011 Sci. China: Tech. Sci. 54 211

    [37]

    Feng H J, Chen L G, Sun F R 2012 Sci. China: Tech. Sci. 55 515

    [38]

    Zheng J L, Luo X B 2011 Proceedings of Chinese Society of Engineering Thermophysics on heat and mass transfer Xi'an, October 14-17, Paper No. 113019 (in Chinese) [郑建林, 罗小兵2011 中国工程热物理学会传热传质学学术会议论文集 西安, 10月14–17日, 论文编号: 113019]

    [39]

    Jia L, Mao Z M, Luo X B 2011 Proceedings of Chinese Society of Engineering Thermophysics on heat and mass transfer Xi'an, October 14-17, Paper No. 113537 (in Chinese) [贾琳, 毛章明, 罗小兵2011中国工程热物理学会传热传质学学术会议论文集 西安, 10月14–17日, 论文编号: 113537]

    [40]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

  • [1]

    Bejan A 1996 J. Adv. Transp. 30 85

    [2]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1–314

    [3]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1–516

    [4]

    Lorenzini G, Moretti S 2011 Fin Shape Thermal Optimization Using Bejan's Constructal Theory (USA: Morgan & Claypool Publishers) pp1–219

    [5]

    Chen L G 2012 Sci. China: Tech. Sci. 55 802

    [6]

    Bejan A 2013 Convection Heat Transfer (4th edition) (New Jersey: Wiley) pp1–605

    [7]

    Bejan A, Lorente S 2013 J. Appl. Phys. 113 151301

    [8]

    Bejan A 2014 Sci. Rep. 4 4017

    [9]

    Bejan A, Almogbel M 2000 Int. J. Heat Mass Transfer 43 2101

    [10]

    Lorenzini G, Rocha L A O 2006 Int. J. Heat Mass Transfer 49 4552

    [11]

    Lorenzini G, Rocha L A O 2009 Int. J. Heat Mass Transfer 52 1458

    [12]

    Lorenzini G, Correa R L 2011 Trans. ASME, J. Heat Transfer 133 081902

    [13]

    Xie Z H, Chen L G, Sun F R 2010 Sci. China: Tech. Sci. 53 2756

    [14]

    Lorenzini G, Moretti S 2014 Thermal Sci. 18 339

    [15]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [16]

    Li Z X, Guo Z Y 2010 Field Synergy Principle of Heat Convection Optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元2010 对流传热优化的场协同理论(北京: 科学出版社)第78–97页]

    [17]

    Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406

    [18]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [19]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [20]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese) [程雪涛, 梁新刚, 徐向华 2011 物理学报 60 060512]

    [21]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 物理学报 62 134401]

    [22]

    Zhao T, Chan Q 2013 Acta Phys. Sin. 62 234401 (in Chinese) [赵甜, 陈群 2013 物理学报 62 234401]

    [23]

    Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506

    [24]

    Sun C, Cheng X T, Liang X G 2014 Chin. Phys. B 23 050513

    [25]

    Cheng X T, Liang X G 2014 Int. J. Heat Mass Transfer 76 263

    [26]

    Feng H J, Chen L G, Xie Z H, Sun F R 2014 Int. Comm. Heat Mass Transfer 52 26

    [27]

    Tao Y B, He Y L, Liu Y K, Tao W Q 2014 Int. J. Heat Mass Transfer 77 695

    [28]

    Wu J, Guo Z Y 2014 Entropy 16 1089

    [29]

    Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124

    [30]

    Chen Q, Xu Y C, Hao J H 2014 Appl. Energy 113 982

    [31]

    Chen L G, Xiao Q H, Xie Z H, Sun F R 2012 Int. Comm. Heat Mass Transfer 39 1556

    [32]

    Xie Z H, Chen L G, Sun F R 2011 Sci. China: Tech. Sci. 54 1249

    [33]

    Chen L G, Xiao Q H, Xie Z H, Sun F R 2013 Int. J. Heat Mass Transfer 67 506

    [34]

    Xiao Q H, Chen L G, Xie Z H, Sun F R 2012 J. Engng. Thermophys. 33 1465 (in Chinese) [肖庆华, 陈林根, 谢志辉, 孙丰瑞 2012 工程热物理学报 33 1465]

    [35]

    Feng H J, Chen L G, Xie Z H, Sun F R J. Engng. Thermophys. in press

    [36]

    Xiao Q H, Chen L G, Sun F R 2011 Sci. China: Tech. Sci. 54 211

    [37]

    Feng H J, Chen L G, Sun F R 2012 Sci. China: Tech. Sci. 55 515

    [38]

    Zheng J L, Luo X B 2011 Proceedings of Chinese Society of Engineering Thermophysics on heat and mass transfer Xi'an, October 14-17, Paper No. 113019 (in Chinese) [郑建林, 罗小兵2011 中国工程热物理学会传热传质学学术会议论文集 西安, 10月14–17日, 论文编号: 113019]

    [39]

    Jia L, Mao Z M, Luo X B 2011 Proceedings of Chinese Society of Engineering Thermophysics on heat and mass transfer Xi'an, October 14-17, Paper No. 113537 (in Chinese) [贾琳, 毛章明, 罗小兵2011中国工程热物理学会传热传质学学术会议论文集 西安, 10月14–17日, 论文编号: 113537]

    [40]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

  • [1] Hu Min-Li, Fang Fan, Fan Qun-Chao, Fan Zhi-Xiang, Li Hui-Dong, Fu Jia, Xie Feng. Theoretical study on macroscopic thermodynamic properties of NO+ ion system. Acta Physica Sinica, 2023, 72(16): 165101. doi: 10.7498/aps.72.20230541
    [2] Quan Hai-Tao, Dong Hui, Sun Chang-Pu. Theoretical and experiments of mesoscopic statistical thermodynamics. Acta Physica Sinica, 2023, 72(23): 230501. doi: 10.7498/aps.72.20231608
    [3] Jian Jun, Lei Jiao, Fan Qun-Chao, Fan Zhi-Xiang, Ma Jie, Fu Jia, Li Hui-Dong, Xu Yong-Gen. Theoretical study on thermodynamic properties of NO gas. Acta Physica Sinica, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [4] Fan Hang, He Guan-Song, Yang Zhi-Jian, Nie Fu-De, Chen Peng-Wan. Theoretical study of interface thermodynamic properties of 1,3,5-triamino-2,4,6-trinitrobenzene based polymer bonded explosives. Acta Physica Sinica, 2019, 68(10): 106201. doi: 10.7498/aps.68.20190075
    [5] Wei Yi-Huan. Thermodynamic properties and matter accretion properties of Kiselev black hole. Acta Physica Sinica, 2019, 68(6): 060402. doi: 10.7498/aps.68.20182055
    [6] Wang Gang, Xie Zhi-Hui, Fan Xu-Dong, Chen Lin-Gen, Sun Feng-Rui. Comparative studies on constructal optimizations of discrete heat generation components based on entransy dissipation minimization and maximum temperature minimization. Acta Physica Sinica, 2017, 66(20): 204401. doi: 10.7498/aps.66.204401
    [7] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Experimental study on + shaped high conductivity constructal channels based on entransy theory. Acta Physica Sinica, 2016, 65(2): 024401. doi: 10.7498/aps.65.024401
    [8] Yang Ai-Bo, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Comparative study on constructal optimizations of rectangular fins heat sink based on entransy dissipation rate minimization and maximum thermal resistance minimization. Acta Physica Sinica, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [9] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal optimization of variable cross-section insulation layer of steel rolling reheating furnace wall based on entransy theory. Acta Physica Sinica, 2015, 64(5): 054402. doi: 10.7498/aps.64.054402
    [10] Xia Shao-Jun, Chen Lin-Gen, Ge Yan-Lin, Sun Feng-Rui. Influence of heat leakage on entransy dissipation minimization of heat exchanger. Acta Physica Sinica, 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [11] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal entransy dissipation rate minimization the problem of constracting “disc-point” cooling channels. Acta Physica Sinica, 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [12] Chen Lin-Gen, Feng Hui-Jun, Xie Zhi-Hui, Sun Feng-Rui. Constructal entransy dissipation rate minimization of a disc on micro and nanoscales. Acta Physica Sinica, 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [13] Song Hai-Feng, Liu Hai-Feng. Theoretical study of thermodynamic properties of metal Be. Acta Physica Sinica, 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [14] LIU LU-XIN. APPLICATIONS OF THE THEORY OF RELATIVISTIC THERMODYNAMICS TO THE SCHWARZSCHILD MATTER SYSTEM IN THE GRAVITATIONAL FIELD. Acta Physica Sinica, 1997, 46(12): 2300-2304. doi: 10.7498/aps.46.2300
    [15] OU FA. . Acta Physica Sinica, 1995, 44(10): 1541-1550. doi: 10.7498/aps.44.1541
    [16] OU FA. QUAS1-THERMODYNAMIC MODEL OF THE DISSIPATIVE SYSTEMS AND ITS APPLICATION TO PHASE TRANSITIONS IN OPTICAL BISTABILITY. Acta Physica Sinica, 1992, 41(8): 1222-1233. doi: 10.7498/aps.41.1222
    [17] LI FU-BlN. THE MICROSCOPIC PHENOMENOLOGICAL THEORY OF ANALYSIS FOR THE PROBLEM OF NONEQUILIBRIUM FLUCTUATIONS (Ⅰ)——A NEW THEORY OF EXTENDED IRREVERSIBLE THERMODY-NAMICS AND NONEQUILIBRIUM CORRECTIONS OF THE FLUCTUATION-DISSIPATION EXPRESSIONS FOR THE HEAT FL. Acta Physica Sinica, 1989, 38(9): 1467-1474. doi: 10.7498/aps.38.1467
    [18] XU JI-HAI. THE THEORY OF SUPERCONDUCTIVITY IN CeCu2Si2 AND UBe13 (Ⅱ)——THE CALCULATIONS OF THERMODYNAMIC QUANTITIES. Acta Physica Sinica, 1988, 37(1): 111-118. doi: 10.7498/aps.37.111
    [19] MON SIAN-CHEN, PU FU-CHO. APPLICATION OF THERMODYNAMICAL RETARDED GREEN FUNCTION TO THE THEORY OF LINE WIDTH OF FERROMAGNETIC RESONANCE. Acta Physica Sinica, 1961, 17(5): 214-221. doi: 10.7498/aps.17.214
    [20] Cheng Kai-jia;Li Zhong-zheng. A GENERAL THERMODYNAMICAL THEORY OF INTERNAL FRICTION (II) INTERNAL FRICTION IN ORDERED ANO DISORDERED STATES. Acta Physica Sinica, 1956, 12(4): 281-297. doi: 10.7498/aps.12.281
Metrics
  • Abstract views:  5531
  • PDF Downloads:  216
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2014
  • Accepted Date:  18 September 2014
  • Published Online:  05 February 2015

/

返回文章
返回