Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on 0.34 THz overmoded surface wave oscillator

Wang Guang-Qiang Wang Jian-Guo Li Shuang Wang Xue-Feng Lu Xi-Cheng Song Zhi-Min

Citation:

Study on 0.34 THz overmoded surface wave oscillator

Wang Guang-Qiang, Wang Jian-Guo, Li Shuang, Wang Xue-Feng, Lu Xi-Cheng, Song Zhi-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The simulation design and preliminary experiment on a 0.34 THz large-power overmoded surface wave oscillator are presented in this paper. For the slow wave structure (SWS) with large overmoded ratio (D/λ ≈ 6.8), a small signal theory is derived for appropriate dimensions of SWS and gap between electron beam and SWS, and makes the device oscillate near the π point of surface wave at TM01 mode. PIC (particle in cell) simulation results show that this SWO (small wave oscillation) can genetate the terahertz wave with frequency and output power of 0.34 THz and 22.8 MW, respectively. SWS with stainless steel is integrally and precisely fabricated by employing mirco-EDM technology, and the experimental setup is built based on a miniaturized pulse power driving source. Results of preliminary experiment and diagnostics show that a terahertz pulse is radiated at a frequency range of 0.319–0.349 THz, a power of no less than 250 kW, and a pulse duration of about 2 ns at beam voltage of about 420 kV and beam current of about 3.1 kA. Finally, the reason for discrepancy between the measured power and the simulation result is analyzed and discussed, laying the foundation for the performance improvement of terahertz surface wave oscillator.
    [1]

    Siegel H P 2002 IEEE Trans. Microw. Theory Tech. 50 910

    [2]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Techn. 1 54

    [3]

    Bratman V L, Denisov G G, Ofitserov M M, Korovin S D, Polevin S D, Rostov V V 1987 IEEE Trans. Plasma Sci. PS-15 2

    [4]

    Min S H, Kwon O J, Sattorov M A, So J K, Park S H, Baek I K, Choi D H, Shin Y M, Park G S 2011 Proceedings of 36th International conference on IRMMW-THz Houston, USA, October 2-7 2011 p1

    [5]

    Bratman V L, Fedotov A E, Makhalov P B 2012 Phys.Plasmas. 19 020704

    [6]

    Bratman V, Glyavin M, Idehara T, Kalynov Y, Luchinin A, Manuilov V, Mitsudo S, Ogawa I, Saito T, Tatematsu Y, Zapevalov V 2009 IEEE Trans. Plasma Sci. 37 36

    [7]

    Chen Z, Wang J, Wang Y, Qiao H, Guo W and Zhang D 2014 Chin. Phys. B 23 068402

    [8]

    Chen Z, Wang J, Wang Y 2014 Chin. Phys. B 23 108401

    [9]

    Booske J H 2008 Phys. Plasma 15 055502

    [10]

    Paoloni C, Brunetti F, Carlo A D, Mineo M, Tamburri E, Terranova M L, Ulisse G, Durand A, Marchesin R, Pham K, Krozer V, M Kotiranta, Rossi A D, Dolfi D, Guiset P, Legagneux P, Schnell J P, Fiorello A, Dispenza M, Secchi A, Zhurbenko V, Megtert S, Bouamrane F, Cojocaru C S, Gohier A 2011 Proceedings of International Vacuum Electronics Conference, Bangalore, India, February 21-24 2011 p55

    [11]

    Nusinovich G S, Pu R F, Antonsen T M, Sinitsyn O V, Rodgers J, Mohamed A, Silverman J, Sheikhly M A, Dimant Y S, Milikh G M 2011 J Infrared Milli Terahertz Waves 32 380

    [12]

    David K A, Yuval C, Susanne M M, Alan B, Baruch L, Thomas M A, William W D 1998 IEEE Trans. Plasma Sci. 26 591

    [13]

    Chen H B, Zhou C M, Hu L L, Ma G W, Xu D M, Song R, Jin X 2010 High Power Laser and Particle Beams 22 865 (in Chinese) [陈洪斌,周传明,胡林林、马国武,许冬明,宋睿,金晓 2010 强激光与粒子束 22 865]

    [14]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 物理学报 59 8459]

    [15]

    Wang G Q, Wang J G, Li S, Wang X F, Tong C J Lu X C, Guo W J 2013 Acta Phys. Sin. 62 150701 (in Chinese) [王光强, 王建国, 李爽, 王雪锋, 童长江, 陆希成, 郭伟杰 2013 物理学报 62 150701]

    [16]

    Li X Z, Wang G Q, Wang J G, Tong C J, Wang X F, Song Z M, Li S, Lu X C 2013 High Power Laser and Particle Beams 25 451 (in Chinese) [李小泽, 王光强, 王建国, 童长江, 王雪锋, 李爽, 陆希成 2013 强激光与粒子束 25 451]

    [17]

    Wang G Q, Wang J G, Tong C J, Li X Z, Li S, Wang X F, Lu X C 2013 Phys. Plasmas 20 043105

    [18]

    Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L G 2013 IEEE Trans. Electron Devices 60 2931

    [19]

    Swegle J A, Poukey J W, Leifeste G T 1985 Phys. Fluids 28 2882

    [20]

    Li S, Wang J G, Tong C J, Wang G Q, Lu X C, Wang X F 2013 Acta Phys. Sin. 62 120703 (in Chinese) [李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋 2013 物理学报 62 120703]

    [21]

    Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108

    [22]

    Li S, Wang G Q, Tong C J, Wang X F 2013 Proceedings of Cross Strait Quad-Regional Radio Science and Wireless Technology Conferenece Chengdu, China, July 21-25 2013 p408

    [23]

    Xiao R Z, Tan W B, Li X Z, Song Z M, Sun J, Chen C H 2012 Phys. Plasmas 19 093102

    [24]

    Huo S F, Chen C H, Sun J, Song Z M, Song W, Xiao R Z 2011 High Power Laser and Particle Beams 11 2959 (in Chinese) [霍少飞, 陈昌华, 孙钧, 宋志敏, 宋玮, 肖仁珍 2011 强激光与粒子束 11 2959]

    [25]

    Wang G Q, Wang J G, Wang X F, Tong C J, Li S, Lu X C 2013 Pro. SPIE 890904

  • [1]

    Siegel H P 2002 IEEE Trans. Microw. Theory Tech. 50 910

    [2]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Techn. 1 54

    [3]

    Bratman V L, Denisov G G, Ofitserov M M, Korovin S D, Polevin S D, Rostov V V 1987 IEEE Trans. Plasma Sci. PS-15 2

    [4]

    Min S H, Kwon O J, Sattorov M A, So J K, Park S H, Baek I K, Choi D H, Shin Y M, Park G S 2011 Proceedings of 36th International conference on IRMMW-THz Houston, USA, October 2-7 2011 p1

    [5]

    Bratman V L, Fedotov A E, Makhalov P B 2012 Phys.Plasmas. 19 020704

    [6]

    Bratman V, Glyavin M, Idehara T, Kalynov Y, Luchinin A, Manuilov V, Mitsudo S, Ogawa I, Saito T, Tatematsu Y, Zapevalov V 2009 IEEE Trans. Plasma Sci. 37 36

    [7]

    Chen Z, Wang J, Wang Y, Qiao H, Guo W and Zhang D 2014 Chin. Phys. B 23 068402

    [8]

    Chen Z, Wang J, Wang Y 2014 Chin. Phys. B 23 108401

    [9]

    Booske J H 2008 Phys. Plasma 15 055502

    [10]

    Paoloni C, Brunetti F, Carlo A D, Mineo M, Tamburri E, Terranova M L, Ulisse G, Durand A, Marchesin R, Pham K, Krozer V, M Kotiranta, Rossi A D, Dolfi D, Guiset P, Legagneux P, Schnell J P, Fiorello A, Dispenza M, Secchi A, Zhurbenko V, Megtert S, Bouamrane F, Cojocaru C S, Gohier A 2011 Proceedings of International Vacuum Electronics Conference, Bangalore, India, February 21-24 2011 p55

    [11]

    Nusinovich G S, Pu R F, Antonsen T M, Sinitsyn O V, Rodgers J, Mohamed A, Silverman J, Sheikhly M A, Dimant Y S, Milikh G M 2011 J Infrared Milli Terahertz Waves 32 380

    [12]

    David K A, Yuval C, Susanne M M, Alan B, Baruch L, Thomas M A, William W D 1998 IEEE Trans. Plasma Sci. 26 591

    [13]

    Chen H B, Zhou C M, Hu L L, Ma G W, Xu D M, Song R, Jin X 2010 High Power Laser and Particle Beams 22 865 (in Chinese) [陈洪斌,周传明,胡林林、马国武,许冬明,宋睿,金晓 2010 强激光与粒子束 22 865]

    [14]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 物理学报 59 8459]

    [15]

    Wang G Q, Wang J G, Li S, Wang X F, Tong C J Lu X C, Guo W J 2013 Acta Phys. Sin. 62 150701 (in Chinese) [王光强, 王建国, 李爽, 王雪锋, 童长江, 陆希成, 郭伟杰 2013 物理学报 62 150701]

    [16]

    Li X Z, Wang G Q, Wang J G, Tong C J, Wang X F, Song Z M, Li S, Lu X C 2013 High Power Laser and Particle Beams 25 451 (in Chinese) [李小泽, 王光强, 王建国, 童长江, 王雪锋, 李爽, 陆希成 2013 强激光与粒子束 25 451]

    [17]

    Wang G Q, Wang J G, Tong C J, Li X Z, Li S, Wang X F, Lu X C 2013 Phys. Plasmas 20 043105

    [18]

    Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L G 2013 IEEE Trans. Electron Devices 60 2931

    [19]

    Swegle J A, Poukey J W, Leifeste G T 1985 Phys. Fluids 28 2882

    [20]

    Li S, Wang J G, Tong C J, Wang G Q, Lu X C, Wang X F 2013 Acta Phys. Sin. 62 120703 (in Chinese) [李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋 2013 物理学报 62 120703]

    [21]

    Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108

    [22]

    Li S, Wang G Q, Tong C J, Wang X F 2013 Proceedings of Cross Strait Quad-Regional Radio Science and Wireless Technology Conferenece Chengdu, China, July 21-25 2013 p408

    [23]

    Xiao R Z, Tan W B, Li X Z, Song Z M, Sun J, Chen C H 2012 Phys. Plasmas 19 093102

    [24]

    Huo S F, Chen C H, Sun J, Song Z M, Song W, Xiao R Z 2011 High Power Laser and Particle Beams 11 2959 (in Chinese) [霍少飞, 陈昌华, 孙钧, 宋志敏, 宋玮, 肖仁珍 2011 强激光与粒子束 11 2959]

    [25]

    Wang G Q, Wang J G, Wang X F, Tong C J, Li S, Lu X C 2013 Pro. SPIE 890904

  • [1] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [2] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [3] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [4] Yan Hao-Lan, Cheng Ya-Qing, Wang Kai-Li, Wang Ya-Xin, Chen Yang-Wei, Yuan Qiu-Lin, Ma Heng. Terahertz wave absorption for alkylcyclohexyl-isothiocyanatobenzene liquid crystal materials. Acta Physica Sinica, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [5] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [6] Jiang Yue-Song, Nie Meng-Yao, Zhang Chong-Hui, Xin Can-Wei, Hua Hou-Qiang. Terahertz scattering property for the coated object of rough surface. Acta Physica Sinica, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [7] Fu Tao, Yang Zi-Qiang, Ouyang Zheng-Biao. Dispersion properties of plasma-filled metallic photonic crystal slow-wave structure. Acta Physica Sinica, 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [8] Guo Wei-Jie, Chen Zai-Gao, Cai Li-Bing, Wang Guang-Qiang, Cheng Guo-Xin. Numerical studies on a 0.14 THz coaxial surface wave oscillator with double-ring metamaterial slow wave structure. Acta Physica Sinica, 2015, 64(7): 070702. doi: 10.7498/aps.64.070702
    [9] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Zhang Dian-Hui, Qiao Hai-Liang. Effect of Ohmic loss on coaxial surface wave oscillator in terahertz band. Acta Physica Sinica, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [10] Zhao Wen-Juan, Chen Zai-Gao, Guo Wei-Jie. Influence of slow wave structure explosive emission on high-power surface wave oscillator. Acta Physica Sinica, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [11] Wang Bing, Wen Guang-Jun, Wang Wen-Xiang. Dispersion characteristics of the coaxial interlaced disk-loaded waveguide slow-wave structure. Acta Physica Sinica, 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [12] Chen Zai-Gao, Wang Jian-Guo, Wang Guang-Qiang, Li Shuang, Wang Yue, Zhang Dian-Hui, Qiao Hai-Liang. A 0.14 THz coaxial surface wave oscillator. Acta Physica Sinica, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [13] Wei Pu, Zhou Ming-Gan, Zhu Lu, Zhang Jing, Wang Xue-Feng, Lv Dong-Ya, Cheng Ning, Yang Ming-Hua, Sun Xiao-Han. A testing method for assembled performances of helix slow-wave structure with a supported rod. Acta Physica Sinica, 2013, 62(9): 094401. doi: 10.7498/aps.62.094401
    [14] Li Xiao-Ze, Teng Yan, Wang Jian-Guo, Song Zhi-Min, Zhang Li-Jun, Zhang Yu-Chuan, Ye Hu. Mode selection in surface wave oscillator with overmoded structure. Acta Physica Sinica, 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [15] Li Shuang, Wang Jian-Guo, Tong Chang-Jiang, Wang Guang-Qiang, Lu Xi-Cheng, Wang Xue-Feng. Optimization of slow-wave structure in high power 0.34 THz radiation source. Acta Physica Sinica, 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [16] Wang Guang-Qiang, Wang Jian-Guo, Li Shuang, Wang Xue-Feng, Tong Chang-Jiang, Lu Xi-Cheng, Guo Wei-Jie. Mode analysis of 0.14 THz overmoded surface wave oscillator. Acta Physica Sinica, 2013, 62(15): 150701. doi: 10.7498/aps.62.150701
    [17] Liu Yang, Xu Jin, Xu Xiong, Shen Fei, Wei Yan-Yu, Huang Min-Zhi, Tang Tao, Wang Wen-Xiang, Gong Yu-Bin. Research on the V-shape folded rectangular groove slow-wave structure. Acta Physica Sinica, 2012, 61(15): 154208. doi: 10.7498/aps.61.154208
    [18] Yi Hong-Xia, Xiao Liu, Liu Pu-Kun, Hao Bao-Liang, Li Fei, Li Guo-Chao. Optimization of slow wave structures of space traveling wave tube based on collectability of spent beam. Acta Physica Sinica, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [19] Lu Zhi-Gang, Wei Yan-Yu, Gong Yu-Bin, Wu Zhou-Miao, Wang Wen-Xiang. Study of high frequency characteristics of the rectangular waveguide grating slow-wave structure with arbitrary grooves. Acta Physica Sinica, 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [20] Yue Ling-Na, Wang Wen-Xiang, Wei Yan-Yu, Gong Yu-Bin. The dispersion characteristics of the coaxial arbitrary-shaped-groove periodic slow-wave structure. Acta Physica Sinica, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
Metrics
  • Abstract views:  4896
  • PDF Downloads:  206
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2014
  • Accepted Date:  11 October 2014
  • Published Online:  05 March 2015

/

返回文章
返回