Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gold nanowire tip-contact-related negative differential resistance twice and the rectification effects

Li Yong-Hui Yan Qiang Zhou Li-Ping Han Qin

Citation:

Gold nanowire tip-contact-related negative differential resistance twice and the rectification effects

Li Yong-Hui, Yan Qiang, Zhou Li-Ping, Han Qin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Electron transport properties of molecular junctions formed by 1, 4-dithiolbenzene(DTB) coupled to [1,1,1] Au nanowires are investigated by using the method of non-equilibrium Green's functions based on first-principle density functional theory. Different S-Au contact configurations are constructed and optimized. The junction with tip-type Au electrode top binding to a thio (S) atom is illustrated by the best configuration for electron transport. Juntions with asymmetric electrode-DTB contact show excellent rectifying performance (the largest rectification ratio being 25.6). Other junctions display negative differential resistance (NDR) effect twice. Analysis shows that the rectifying effect may originate from the difference between the stabilities of S-Au contact modes at both sides. Molecular orbitals including the tip Au atoms are calculated. In low bias region, the orbitals near the Fermi energy dominate the electrons transmission; while, as the bias increases, those apart from the Fermi energy contribute to the transport, along with the DTB eigen-level. During the whole process, the locations and amplitude of transmission vary with bias voltage and I/V curves show two peaks, resulting in twice-NDR effect.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274238, 11104197), and the Qing Lan Project of Jiangsu Higher Education institutions, National Undergraduate Innovation and Entrepreneurship Training Projects, China (Grant No. 201310285016Z).
    [1]

    Avirm A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [2]

    Fu X X, Zhang L X, Li Z L, Wang C K 2013 Chin. Phys. B 22 028504

    [3]

    Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 047302

    [4]

    Ren H, Liang W, Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 077301

    [5]

    Yao Z, Postma W C, Balent S L, Dekker C 1999 Nature 402 273

    [6]

    Metzger R M, Chen B, Hopfner U, Lakshmikantham M V, Vuillaume D, Tsuyoshi K, Wu X, Hiroki T, Terry V H, Hiromi S, Jeffrey W B, Christina H, Michael P C, Brehmer B, Geoffrey J A J. 1997 J. Am. Chem. Soc. 119 10455

    [7]

    Ouyang M, Awschalom D D 2003 Science 301 1074

    [8]

    Liu Y, He J, Chan M S, Du C X, Ye Y, Zhao W, Wu W, Deng W L, Wang W P 2014 Chin. Phys. B 23 097102

    [9]

    Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, A bruna H D, McEuen P L, Ralph D C 2002 Nature 417 722

    [10]

    Liang W J, Shores M P, Bockrath M, Long J R, Park H 2002 Nature 417 725

    [11]

    Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542

    [12]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003

    [13]

    Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 , Angew. Chem. Int. Ed. 52 2449

    [14]

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501 (in Chinese) [刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501]

    [15]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518

    [16]

    Tsua A, Osuks A 2001 Science 293 79

    [17]

    Reimers J R, Hall L E, Cmssley M J, Hush N S 1999 J. Phys. Chem. A 103 4385

    [18]

    Hou S M, Tao C G, Liu H W, Zhao X Y, Liu W M, Xue Z Q 2001 Acta Phys. Sin. 50 0223 (in Chinese) [侯士敏, 陶成钢, 刘虹雯, 赵兴钰, 刘惟敏, 薛增泉 2001 物理学报 50 0223]

    [19]

    Anaïs Loubat, Marianne Imperor-Clerc, Brigitte Pansu, Florian Meneau, Bertrand Raquet, Guillaume Viau, Lise-Marie Lacroix 2014 Langmuir 30 4005

    [20]

    Luca Sementa, Andrea Marini, Giovanni Barcaro, Fabio R. Negreiros, and Alessandro Fortunelli 2014 ACS Photonics 1 315

    [21]

    Ci X T, Wu B T, Song M, Chen G X, Liu Y, Wu E, Zeng H P 2014 Chin. Phys. B 23 097303

    [22]

    Wang S F, He D W, Wang Y S, Hu Y, Duan J H, Fu M, Wang W S 2014 Chin. Phys. B 23 097803

    [23]

    Hu Y B, Zhu Y, Gao H J, Guo H 2005 Phys. Rev. Lett. 95 156803

    [24]

    Evers F, Weigend F, Koentopp M 2004 Phys, Rev. B 69 235411

    [25]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J 2007 Acta Phys. Sin. 56 4884 (in Chinese) [夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰 2007 物理学报 56 4884]

  • [1]

    Avirm A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [2]

    Fu X X, Zhang L X, Li Z L, Wang C K 2013 Chin. Phys. B 22 028504

    [3]

    Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 047302

    [4]

    Ren H, Liang W, Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 077301

    [5]

    Yao Z, Postma W C, Balent S L, Dekker C 1999 Nature 402 273

    [6]

    Metzger R M, Chen B, Hopfner U, Lakshmikantham M V, Vuillaume D, Tsuyoshi K, Wu X, Hiroki T, Terry V H, Hiromi S, Jeffrey W B, Christina H, Michael P C, Brehmer B, Geoffrey J A J. 1997 J. Am. Chem. Soc. 119 10455

    [7]

    Ouyang M, Awschalom D D 2003 Science 301 1074

    [8]

    Liu Y, He J, Chan M S, Du C X, Ye Y, Zhao W, Wu W, Deng W L, Wang W P 2014 Chin. Phys. B 23 097102

    [9]

    Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, A bruna H D, McEuen P L, Ralph D C 2002 Nature 417 722

    [10]

    Liang W J, Shores M P, Bockrath M, Long J R, Park H 2002 Nature 417 725

    [11]

    Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542

    [12]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003

    [13]

    Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 , Angew. Chem. Int. Ed. 52 2449

    [14]

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501 (in Chinese) [刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501]

    [15]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518

    [16]

    Tsua A, Osuks A 2001 Science 293 79

    [17]

    Reimers J R, Hall L E, Cmssley M J, Hush N S 1999 J. Phys. Chem. A 103 4385

    [18]

    Hou S M, Tao C G, Liu H W, Zhao X Y, Liu W M, Xue Z Q 2001 Acta Phys. Sin. 50 0223 (in Chinese) [侯士敏, 陶成钢, 刘虹雯, 赵兴钰, 刘惟敏, 薛增泉 2001 物理学报 50 0223]

    [19]

    Anaïs Loubat, Marianne Imperor-Clerc, Brigitte Pansu, Florian Meneau, Bertrand Raquet, Guillaume Viau, Lise-Marie Lacroix 2014 Langmuir 30 4005

    [20]

    Luca Sementa, Andrea Marini, Giovanni Barcaro, Fabio R. Negreiros, and Alessandro Fortunelli 2014 ACS Photonics 1 315

    [21]

    Ci X T, Wu B T, Song M, Chen G X, Liu Y, Wu E, Zeng H P 2014 Chin. Phys. B 23 097303

    [22]

    Wang S F, He D W, Wang Y S, Hu Y, Duan J H, Fu M, Wang W S 2014 Chin. Phys. B 23 097803

    [23]

    Hu Y B, Zhu Y, Gao H J, Guo H 2005 Phys. Rev. Lett. 95 156803

    [24]

    Evers F, Weigend F, Koentopp M 2004 Phys, Rev. B 69 235411

    [25]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J 2007 Acta Phys. Sin. 56 4884 (in Chinese) [夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰 2007 物理学报 56 4884]

  • [1] Zhao Jian-Ning, Wei Dong, Lü Guo-Zheng, Wang Zi-Cheng, Liu Dong-Huan. Transient thermal rectification effect of one-dimensional heterostructure. Acta Physica Sinica, 2023, 72(4): 044401. doi: 10.7498/aps.72.20222085
    [2] He An, Xue Cun. Tunable reversal rectification in $T_{\rm{c}}$-gradient superconducting film by slit. Acta Physica Sinica, 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [3] Shang Shuai-Peng, Lu Yong-Jun, Wang Feng-Hui. Surface effects on buckling of nanowire electrode. Acta Physica Sinica, 2022, 71(3): 033101. doi: 10.7498/aps.71.20211864
    [4] Shao Chun-Rui, Li Hai-Yang, Wang Jun, Xia Guo-Dong. Thermal rectification enhancement based on porous structure in bulk materials. Acta Physica Sinica, 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [5] Fan Shuai-Wei, Wang Ri-Gao. Effect of electrode position and cross section size on transport properties of molecular devices. Acta Physica Sinica, 2018, 67(21): 213101. doi: 10.7498/aps.67.20180974
    [6] Chen Ying, Hu Hui-Fang, Wang Xiao-Wei, Zhang Zhao-Jin, Cheng Cai-Ping. Rectifying behaviors induced by B/N-doping in similar right triangle graphene devices. Acta Physica Sinica, 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [7] Ye Tong, Gao Yun, Yin Yan. Surface-enhanced Raman scattering effects of gold nanorods prepared by polycarbonate membranes. Acta Physica Sinica, 2013, 62(12): 127801. doi: 10.7498/aps.62.127801
    [8] Si Li-Ming, Hou Ji-Xuan, Liu Yong, Lü Xin. Extraction of effective constitutive parameters of active terahertz metamaterial with negative differential resistance carbon nanotubes. Acta Physica Sinica, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [9] Zheng Li-Si, Feng Miao, Zhan Hong-Bing. Effects of surface modification on nonlinear optical performance of gold nanoparticles. Acta Physica Sinica, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [10] Zhou Guo-Rong, Teng Xin-Ying, Wang Yan, Geng Hao-Ran, Hur Bo-Young. Size effect on the freezing behavior of aluminum nanowires. Acta Physica Sinica, 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [11] Fan Zhi-Qiang, Xie Fang. Effect of B and N doping on the negative differential resistance in molecular device. Acta Physica Sinica, 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [12] Zhang Mao-Ping, Zhong Wei-Rong, Ai Bao-Quan. Thermal rectification of asymmetric double-stranded molecular structure. Acta Physica Sinica, 2011, 60(6): 060511. doi: 10.7498/aps.60.060511
    [13] Guo Chao, Zhang Zhen-Hua, Pan Jin-Bo, Zhang Jun-Jun. Effects of end groups on the rectifying performance in D-B-A molecular rectifiers. Acta Physica Sinica, 2011, 60(11): 117303. doi: 10.7498/aps.60.117303
    [14] Pan Jin-Bo, Zhang Zhen-Hua, Qiu Ming, Guo Chao. Regulating effect of a bonding bridge on rectifying performance in molecular rectifiers. Acta Physica Sinica, 2011, 60(3): 037302. doi: 10.7498/aps.60.037302
    [15] Wang Jun, Li Jing-Ying, Zheng Zhi-Gang. Elimination of thermal rectification effect and the reversed thermal diode. Acta Physica Sinica, 2010, 59(1): 476-481. doi: 10.7498/aps.59.476
    [16] Huang Jin-Hua, Zhang Kun, Pan Nan, Gao Zhi-Wei, Wang Xiao-Ping. Enhancing ultraviolet photoresponse of ZnO nanowire device by surface functionalization. Acta Physica Sinica, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [17] Localized surface plasmon resonance of half-shell gold film. Acta Physica Sinica, 2007, 56(12): 7219-7223. doi: 10.7498/aps.56.7219
    [18] Zhang Zhi-Yong, Wang Tai-Hong. Multipeak negative-differential-resistance device by combining SET and MOSFET. Acta Physica Sinica, 2003, 52(7): 1766-1770. doi: 10.7498/aps.52.1766
    [19] WANG RONG, ZHU ZHENG-HE, YANG CHUAN-LU. GEOMETRY OF C42+ AND THE JAHN-TELLER EFFECT. Acta Physica Sinica, 2001, 50(9): 1675-1680. doi: 10.7498/aps.50.1675
    [20] HOU SHI-MIN, TAO CHENG-GANG, LIU HONG-WEN, ZHAO XING-YU, LIU WEI-MIN, XUE ZENG-QUAN. STUDY ON GOLD NANOCLUSTERS AND GOLD NANOWIRES ON THE SURFACE OF HIGHLY ORIENTED PYROLYTIC GRAPHITE. Acta Physica Sinica, 2001, 50(2): 223-226. doi: 10.7498/aps.50.223
Metrics
  • Abstract views:  5157
  • PDF Downloads:  520
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2014
  • Accepted Date:  09 October 2014
  • Published Online:  05 March 2015

/

返回文章
返回