Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of X-ray spectrum of Ar tracer in indirectly driven implosion

Qiao Xiu-Mei Zheng Wu-Di Gao Yao-Ming

Citation:

Simulation of X-ray spectrum of Ar tracer in indirectly driven implosion

Qiao Xiu-Mei, Zheng Wu-Di, Gao Yao-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As the X-ray spectrum of tracer in inertial confinement fusion implosion target is usually used to infer electron temperature, density, and the mixture of fuel and shell, it is necessary to study the relation between the characteristics of X-ray emission spectrum and the implosion process, which is helpful for inferring the implosion status. Under the condition of SGIII prototype, approximately 0.5% atomic percent of Ar atoms are doped in an indirectly driven implosion target, X-ray spectrum of Ar is numerically simulated. In this article, the influences of line re-absorption effect, tracer concentration, and profile of fuel plasma state on the emission spectrum are studied. The relation between the temporal evolution of the emission spectrum and the implosion process is also investigated. It is found that as the tracer concentration increases up to ~1%, the X-ray intensity is enhanced, but the influence of line re-absorption becomes severe. Temporal evolution shows that the peak time of Ar X-ray intensity is almost the same as that of neutron production (the former delays about 15 ps, which usually cannot be resolved). As is well known, the strong line emission occurs in the plasma with high temperature, high electron density, and proper ionization. The detailed analysis shows that at the peak emission time, as the core Ar plasma is over ionized, the main X-ray line emission region is located near the boundary region of the fuel, and this thin shell, whose thickness is about 4 μm and whose volume accounts for 56% of the total fuel plasma volume, emits the X-ray whose intensity is about 72% of the total line intensity. Therefore, the space-averaged plasma temperature and density, which are obtained by fitting the emission spectrum, mainly reflect the plasma state in this region.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475033).
    [1]

    Hammel B A, Keane C J, Dittrich T R, Kania D R, Kilkenny J D, Lee R W, Kevedahl W K 1994 J. Quant. Spectrosc. Ra. Transfer 51 113

    [2]

    Woolsey N C, Hammel B A, Keane C J, Asfaw A, Back C A, Moreno J C, Nash J K, Calisti A, Mossé C, Stamm R, Talin B, Klein L, Lee R W 1997 Phys. Rev. E 56 2314

    [3]

    Welser-Sherrill L, Mancini R C, Koch J A, Izumi N, Tommasini R, Haan S W, Haynes D A, Golovkin I E, Macfarlane J J, Delettrez J A, Marshall F J, Regan S P, Smalyuk V A, Kyrala G 2007 Phys. Rev. E 76 056403

    [4]

    Florido R, Mancini R C, Nagayama T, Tommasini R, Delettrez J A, Regan S P, Yaakobi B 2011 Phys. Rev. E 83 066408

    [5]

    Hammel B A, Scott H A, Regan S P, Cerjan C, Clark D S, Edwards M J, Epstein R, Glenzer S H, Haan S W, Izumi N, Koch J A, Kyrala G A, Landen O L, Langer S H, Peterson K, Smalyuk V A, Suter L J, Wilson D C 2011 Phys. Plasmas 18 056310

    [6]

    Keane C J, Pollak G W, Cook R C, Dittrich T R, Hammel B A, Landen L, Langer S H, Levedahl W K, Munro D H, Scott H A, Zimmerman G B 1995 J. Quant. Spectrosc. Ra. Transfer 54 207

    [7]

    Langer S H, Scott H A, Marinak M M, Landen O L 2001 J. Quant. Spectrosc. Ra. Transfer 71 479

    [8]

    Zhang J Y, Yang G H, Miao W Y, Ding Y N 2006 High Power Laser Particle Beams 18 939 (in Chinese) [张继彦, 杨国洪, 缪文勇, 丁耀南 2006 强激光与粒子束 18 939]

    [9]

    Gao Y M, Li M, Li Y S, Kang D G, Li Y S 2011 High Power Laser Particle Beams 23 693 (in Chinese) [高耀明, 李蒙, 李永升, 康洞国, 李沄生 2011 强激光与粒子束 23 693]

    [10]

    Duan B, Li Y M, Fang Q Y, Zhang J Y 2005 High Power Laser Particle Beams 17 55 (in Chinese) [段斌, 李月明, 方泉玉, 张继彦 2005 强激光与粒子束 17 55]

    [11]

    Qiao X M, Zheng W D, Gao Y M, Ye W H 2012 Acta Phys. Sin. 61 175201 (in Chinese) [乔秀梅, 郑无敌, 高耀明, 叶文华 2012 物理学报 61 175201]

    [12]

    Zhou J Y, Huang T X, Meng L 2008 High Power Laser Particle Beams 20 1658 (in Chinese) [周近宇, 黄天眩, 蒙林 2008 强激光与粒子束 20 1658]

    [13]

    Welser L A, Mancini R C, Koch J A, Izumi N, Dalhed H, Scott H, Barbee Jr T W, Lee R W, Golovkin I E, Marshall F, Delettrez J, Klein L 2003 J. Quant. Spectrosc. Ra. Transfer 81 487

    [14]

    Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosses C, Godbert L, Stamm R, Talin B, Hooper C F, Asfaw A, Klein L S, Lee R W 1997 J. Quant. Spectrosc. Ra. Transfer 58 975

    [15]

    Nagayama T, Mancini R C, Florido R, Mayer D, Tommasini R, Koch J A, Pelettrez J A, Regan S P, Smalyuk V A 2014 Phys. Plasmas 21 050702

    [16]

    Koch J, Izumi N, Welser L A, Mancini R C 2008 High Energy Dens. Phys. 4 1

  • [1]

    Hammel B A, Keane C J, Dittrich T R, Kania D R, Kilkenny J D, Lee R W, Kevedahl W K 1994 J. Quant. Spectrosc. Ra. Transfer 51 113

    [2]

    Woolsey N C, Hammel B A, Keane C J, Asfaw A, Back C A, Moreno J C, Nash J K, Calisti A, Mossé C, Stamm R, Talin B, Klein L, Lee R W 1997 Phys. Rev. E 56 2314

    [3]

    Welser-Sherrill L, Mancini R C, Koch J A, Izumi N, Tommasini R, Haan S W, Haynes D A, Golovkin I E, Macfarlane J J, Delettrez J A, Marshall F J, Regan S P, Smalyuk V A, Kyrala G 2007 Phys. Rev. E 76 056403

    [4]

    Florido R, Mancini R C, Nagayama T, Tommasini R, Delettrez J A, Regan S P, Yaakobi B 2011 Phys. Rev. E 83 066408

    [5]

    Hammel B A, Scott H A, Regan S P, Cerjan C, Clark D S, Edwards M J, Epstein R, Glenzer S H, Haan S W, Izumi N, Koch J A, Kyrala G A, Landen O L, Langer S H, Peterson K, Smalyuk V A, Suter L J, Wilson D C 2011 Phys. Plasmas 18 056310

    [6]

    Keane C J, Pollak G W, Cook R C, Dittrich T R, Hammel B A, Landen L, Langer S H, Levedahl W K, Munro D H, Scott H A, Zimmerman G B 1995 J. Quant. Spectrosc. Ra. Transfer 54 207

    [7]

    Langer S H, Scott H A, Marinak M M, Landen O L 2001 J. Quant. Spectrosc. Ra. Transfer 71 479

    [8]

    Zhang J Y, Yang G H, Miao W Y, Ding Y N 2006 High Power Laser Particle Beams 18 939 (in Chinese) [张继彦, 杨国洪, 缪文勇, 丁耀南 2006 强激光与粒子束 18 939]

    [9]

    Gao Y M, Li M, Li Y S, Kang D G, Li Y S 2011 High Power Laser Particle Beams 23 693 (in Chinese) [高耀明, 李蒙, 李永升, 康洞国, 李沄生 2011 强激光与粒子束 23 693]

    [10]

    Duan B, Li Y M, Fang Q Y, Zhang J Y 2005 High Power Laser Particle Beams 17 55 (in Chinese) [段斌, 李月明, 方泉玉, 张继彦 2005 强激光与粒子束 17 55]

    [11]

    Qiao X M, Zheng W D, Gao Y M, Ye W H 2012 Acta Phys. Sin. 61 175201 (in Chinese) [乔秀梅, 郑无敌, 高耀明, 叶文华 2012 物理学报 61 175201]

    [12]

    Zhou J Y, Huang T X, Meng L 2008 High Power Laser Particle Beams 20 1658 (in Chinese) [周近宇, 黄天眩, 蒙林 2008 强激光与粒子束 20 1658]

    [13]

    Welser L A, Mancini R C, Koch J A, Izumi N, Dalhed H, Scott H, Barbee Jr T W, Lee R W, Golovkin I E, Marshall F, Delettrez J, Klein L 2003 J. Quant. Spectrosc. Ra. Transfer 81 487

    [14]

    Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosses C, Godbert L, Stamm R, Talin B, Hooper C F, Asfaw A, Klein L S, Lee R W 1997 J. Quant. Spectrosc. Ra. Transfer 58 975

    [15]

    Nagayama T, Mancini R C, Florido R, Mayer D, Tommasini R, Koch J A, Pelettrez J A, Regan S P, Smalyuk V A 2014 Phys. Plasmas 21 050702

    [16]

    Koch J, Izumi N, Welser L A, Mancini R C 2008 High Energy Dens. Phys. 4 1

Metrics
  • Abstract views:  4547
  • PDF Downloads:  388
  • Cited By: 0
Publishing process
  • Received Date:  12 June 2014
  • Accepted Date:  29 August 2014
  • Published Online:  05 February 2015

/

返回文章
返回