Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S-shaped current-voltage characteristics in perovskite solar cell

Shi Jiang-Jian Wei Hui-Yun Zhu Li-Feng Xu Xin Xu Yu-Zhuan Lü Song-Tao Wu Hui-Jue Luo Yan-Hong Li Dong-Mei Meng Qing-Bo

Citation:

S-shaped current-voltage characteristics in perovskite solar cell

Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Analysis of the DC current-voltage (I-V) characteristics is an effective approach to investigate the charge transport properties in a solar cell. The perovskite solar cell attracted wide research interest in the past two years due to their outstanding photovoltaic capacity. However, the charge transport characteristics and working principles of this kind of cells have not been clearly clarified. In this work, the I-V characteristics of the perovskite solar cell have been investigated from the experimental and theoretical perspective views. Moreover, the S-shaped I-V feature coming from the limitation of interfacial charge transport was focused on. With a series connected diode model, the I-V characteristics of the solar cell are investigated and simulated. It is found that the charge accumulation appears gradually when the interfacial charge transport velocity is decreased, lowering the output of the cell. When the interfacial charge transport decreases gradually, the short-circuit current density and the fill factor of the cell also decrease obviously. In experiments, limitations of charge transport at the front and back contacts of the cell have been designed, successfully producing varied S-shaped I-V features. It is found that both in the hole transport material-free and in the p-i-n perovskite solar cells, the S-shaped I-V characteristics can appear. Moreover, the origins of these features in various experimental conditions have also been discussed, which can be the energy barriers or large charge transport resistances in the cell. These energy barriers and resistances will lower the charge transport velocity and may cause charge accumulation, thus leading to the appearence of the S-shaped features. Meanhiwle, the emerging S-shaped I-V curves all have their own features, which may be due to the specific interfacial energy band structures. Thus, to promote the cell performance, the charge transport and interface energy barrier should be attached importance to and carefully designed. This work directly shows the interface factors that can significantly affect the cell performance, and gives a theoretical guide in cell design. By considering these limiting factors, the cell fabrication has been carefully designed with the control on the thickness of the mesoporous layer and the perovskite absorber film deposition, and a forward-swept efficiency of 15.5% can be achieved without any modification of the cell.
    • Funds: Project supported by the Beijing Science and Technology Committee (Grant No. Z131100006013003), the National Key Basic Research Program (Grant No. 2012CB932903), and the National Natural Science Foundation of China (Grant Nos. 51372270, 51372272, 11474333, 21173260, 91233202, 91433205, 51421002).
    [1]

    Sze S M, Kwok K Ng 2006 Physics of Semiconductor Devices (New York: John Wiley & Sons, Ltd)

    [2]

    Jiang J P, Sun C C 2010 Heterojunction Principles and Devices (Beijing: Publishing house of electronics industry) (in Chinese) [江剑平 孙成城 2010 异质结原理与器件 (北京:电子工业出版社)]

    [3]

    Luque A, Hegedus S 2011 Handbook of Photovoltaic Science and Engineering (UK: John Wiley & Sons, Ltd)

    [4]

    Steven H, Shafarman W N 2004 Prog. Photovolt.: Res. Appl. 12 155

    [5]

    Kojima A, Toshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [6]

    Kim H S, Lee C R. Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [7]

    Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [8]

    Liu M, Johnston B, Snaith H J 2013 Nature 501 395

    [9]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [10]

    Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J 2014 Energy Environ. Sci. 7 2619

    [11]

    Im J H, Jang I H, Pellet N, Grätzel M, Park N G 2014 Nat. Nanotech. 9 927

    [12]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S Il 2014 Nat. Mater. 13 897

    [13]

    You J, Hong Z, Yang Y, Chen Q, Cai M, Song T, Chen C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS Nano 8 1674

    [14]

    Docampo P, Ball J M, Daewich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [15]

    Liu D, Kelly T L 2014 Nat. Photon. 8 133

    [16]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249

    [17]

    Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [18]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H 2014 Science 345 295

    [19]

    Wei Z, Chen H, Yan K, Yang S H 2014 Angew. Chem. Int. Ed. DOI: 10.1002anie.201408638

    [20]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [21]

    Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306

    [22]

    Gupta D, Bag M, Narayan K S 2008 Appl. Phys. Lett. 92 093301

    [23]

    Shi J, Luo Y, Wei H, Luo J, Dong J, Lv S, Xiao J, Xu Y, Zhu L, Xu X, Wu H, Li D, Meng Q 2014 ACS Appl. Mater. Interf. 6 9711

    [24]

    Gupta D, Mukhopadhyay S, Narayan K S 2010 Solar Energy Mater. Solar Cells 94 1309

    [25]

    Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C 2014 J. Am. Chem. Soc. 136 12205

  • [1]

    Sze S M, Kwok K Ng 2006 Physics of Semiconductor Devices (New York: John Wiley & Sons, Ltd)

    [2]

    Jiang J P, Sun C C 2010 Heterojunction Principles and Devices (Beijing: Publishing house of electronics industry) (in Chinese) [江剑平 孙成城 2010 异质结原理与器件 (北京:电子工业出版社)]

    [3]

    Luque A, Hegedus S 2011 Handbook of Photovoltaic Science and Engineering (UK: John Wiley & Sons, Ltd)

    [4]

    Steven H, Shafarman W N 2004 Prog. Photovolt.: Res. Appl. 12 155

    [5]

    Kojima A, Toshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [6]

    Kim H S, Lee C R. Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [7]

    Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [8]

    Liu M, Johnston B, Snaith H J 2013 Nature 501 395

    [9]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [10]

    Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J 2014 Energy Environ. Sci. 7 2619

    [11]

    Im J H, Jang I H, Pellet N, Grätzel M, Park N G 2014 Nat. Nanotech. 9 927

    [12]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S Il 2014 Nat. Mater. 13 897

    [13]

    You J, Hong Z, Yang Y, Chen Q, Cai M, Song T, Chen C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS Nano 8 1674

    [14]

    Docampo P, Ball J M, Daewich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [15]

    Liu D, Kelly T L 2014 Nat. Photon. 8 133

    [16]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249

    [17]

    Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [18]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H 2014 Science 345 295

    [19]

    Wei Z, Chen H, Yan K, Yang S H 2014 Angew. Chem. Int. Ed. DOI: 10.1002anie.201408638

    [20]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [21]

    Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306

    [22]

    Gupta D, Bag M, Narayan K S 2008 Appl. Phys. Lett. 92 093301

    [23]

    Shi J, Luo Y, Wei H, Luo J, Dong J, Lv S, Xiao J, Xu Y, Zhu L, Xu X, Wu H, Li D, Meng Q 2014 ACS Appl. Mater. Interf. 6 9711

    [24]

    Gupta D, Mukhopadhyay S, Narayan K S 2010 Solar Energy Mater. Solar Cells 94 1309

    [25]

    Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C 2014 J. Am. Chem. Soc. 136 12205

  • [1] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [3] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [4] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [5] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [6] Xu Jie, Feng Ze-Hua, Liu Bing-Ye, Zhu Xin-Yi, Dai Jin-Fei, Dong Hua, Wu Zhao-Xin. Preparation and optoelectronic characteristics of perovskite module devices in air assisted by polymer inner packaging layern. Acta Physica Sinica, 2023, 72(24): 248802. doi: 10.7498/aps.72.20231055
    [7] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [9] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [11] Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun. Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [12] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [13] Li Xiao-Guo, Zhang Xin, Shi Ze-Jiao, Zhang Hai-Juan, Zhu Cheng-Jun, Zhan Yi-Qiang. Research progress of interface passivation of n-i-p perovskite solar cells. Acta Physica Sinica, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [14] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min. Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Physica Sinica, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [18] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] Huang Lin-Quan, Zhou Ling-Yu, Yu Wei, Yang Dong, Zhang Jian, Li Can. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells. Acta Physica Sinica, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
Metrics
  • Abstract views:  10519
  • PDF Downloads:  2558
  • Cited By: 0
Publishing process
  • Received Date:  23 October 2014
  • Accepted Date:  24 November 2014
  • Published Online:  05 February 2015

/

返回文章
返回