Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microenvironment-enhanced invasive tumor growth via cellular automaton simulations

Liang Long Jiao Yang

Citation:

Microenvironment-enhanced invasive tumor growth via cellular automaton simulations

Liang Long, Jiao Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Emergence of invasive and metastatic behavior in malignant tumors can often lead to fatal outcomes for patients. The collective malignant tumor behavior resulting from the complex tumor-host interactions and the interactions between the tumor cells are currently poorly understood. Progress towards such an understanding necessarily requires an interdisciplinary and collaborative effort. In this paper, we review a state-of-art simulation technique, i.e., a cellular automaton (CA) model which has been developed by the authors over the past few years to investigate microenvironment-enhanced invasive growth of avascular solid tumors. This CA model incorporates a variety of microscopic-scale tumor-host interactions, including the degradation of the extracellular matrix by the malignant cells, nutrient-driven cell migration, pressure build-up due to the deformation of the microenvironment by the growing tumor and its effect on the local tumor-host interface stability. Moreover, the effects of cell-cell adhesion on tumor growth are also explicitly taken into account. A number of bench-mark collective invasion behaviors have been successfully reproduced via the CA model, including the emergence of elongated invasion branches characterized by homotype attraction and least resistance path, development of rough tumor surface in a high-pressure confined environment, as well as reduced invasion due to strong cell-cell adhesion. Such simulated bench-mark behaviors strongly indicate the validity and predictive power of the CA model. In addition, the CA model allows one to investigate the role of various different microenvironment factors in the progression of the neoplasm, in particular, the promotion and enhancement of tumor malignancy. As an example, a “phase diagram” that summarizes the dependency of tumor invasive behavior on extracellular matrix (ECM) rigidity (density) and strength of cell-cell adhesion is constructed based on comprehensive simulations. In this simple phase diagram, a clear transition from non-invasive to invasive behaviors of the tumor can be achieved by increasing ECM rigidity and/or decreasing the strength of cell-cell adhesion. This model, when properly combined with clinical data, in principle enables one to broaden the conclusions drawn from existing medical data, suggest new experiments, test hypotheses, predict behavior in experimentally unobservable situations, be employed for early detection and prognosis, and to suggest optimized treatment strategy for individual patient.
    [1]

    Coffey D S 1998 Nat. Med. 4 882

    [2]

    Anderson A R A 2005 Math. Med. Biol. 22 163

    [3]

    Anderson A R A, Weaver A M, Cummings P T, Quaranta V 2006 Cell 127 905

    [4]

    Deisboeck T S, Berens M E, Kansal A R, Torquato S, Stemmer-Rachamimov A O, Chiocca E A 2001 Cell Prolif. 34 115

    [5]

    Fidler I J 2003 Nat. Rev. Cancer 3 453

    [6]

    Frieboes H B, Zheng X, Sun C-H, Tromberg B, Gatenby R, Cristini V 2006 Cancer Res. 66 1597

    [7]

    Hanahan D, Weinberg R A 2000 Cell 100 57

    [8]

    Kerbel R S 1990 Adv. Cancer Res., edited by George F. Vande Woude and George Klein (Waltham, Massachusetts: Academic Press) pp87–-132

    [9]

    Liotta L A, Kohn E C 2003 Nat. Genet. 33 10

    [10]

    Gatenby R A 1996 Eur. J. Cancer 32A 722

    [11]

    Fearon E R, Vogelstein B 1990 Cell 61 759

    [12]

    Jiao Y, Torquato S 2011 PLoS Comput. Biol. 7 e1002314

    [13]

    Jiao Y, Torquato S 2012 AIP Adv. 2 011003

    [14]

    Anderson A R A, Chaplain M a J 1998 Bull. Math. Biol. 60 857

    [15]

    Anderson A R A, Quaranta V 2008 Nat. Rev. Cancer 8 227

    [16]

    Brú A, Casero D 2006 J. Theor. Biol. 243 171

    [17]

    Byrne H M 2010 Nat. Rev. Cancer 10 221

    [18]

    Byrne H M, Alarcon T, Owen M R, Webb S D, Maini P K 2006 Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 364 1563

    [19]

    Gatenby R A, Maini P K 2003 Nature 421 321

    [20]

    Guiot C, Pugno N, Delsanto P P, Deisboeck T S 2007 Phys. Biol. 4 P1

    [21]

    Helmlinger G, Netti P A, Lichtenbeld H C, Melder R J, Jain R K 1997 Nat. Biotechnol. 15 778

    [22]

    Hogan M C, Lee A, Solberg L A, Thomé S D 2002 Am. J. Hematol. 70 55

    [23]

    KANSAL A R, TORQUATO S, HARSH IV G R, CHIOCCA E A, DEISBOECK T S 2000 J. Theor. Biol. 203 367

    [24]

    KANSAL A R, TORQUATO S, CHIOCCA E A, DEISBOECK T S 2000 J. Theor. Biol. 207 431

    [25]

    T P Padera, Kadambi A, Di Tomaso E, Carreira C M, Brown E B, Boucher Y, Choi N C, Mathisen D, Wain J, Mark E J, Munn L L, Jain R K 2002 Science 296 1883

    [26]

    Paszek M J, Zahir N, Johnson K R, Lakins J N, Rozenberg G I, Gefen A, Reinhart-King C A, Margulies S S, Dembo M, Boettiger D, Hammer D A, Weaver V M 2005 Cancer Cell 8 241

    [27]

    Torquato S 2011 Phys. Biol. 8 015017

    [28]

    Schrödinger E 1992 What Is Life?: With Mind and Matter and Autobiographical Sketches (Cambridge, UK: Cambridge University Press)

    [29]

    Fernandez-Gonzalez R, Simoes S de M, Röper J-C, Eaton S, Zallen J A 2009 Dev. Cell 17 736

    [30]

    Wozniak M A, Chen C S 2009 Nat. Rev. Mol. Cell Biol. 10 34

    [31]

    Boey S K, Boal D H, Discher D E 1998 Biophys. J. 75 1573

    [32]

    Coughlin M F, Stamenović D 2003 Biophys. J. 84 1328

    [33]

    Gordon D, Bernheim-Groswasser A, Keasar C, Farago O 2012 Phys. Biol. 9 026005

    [34]

    Totsukawa G, Wu Y, Sasaki Y, Hartshorne D J, Yamakita Y, Yamashiro S, Matsumura F 2004 J. Cell Biol. 164 427

    [35]

    Friedl P, Bröcker E-B 2000 Cell. Mol. Life Sci. CMLS 57 41

    [36]

    Grinnell F, Petroll W M 2010 Annu. Rev. Cell Dev. Biol. 26 335

    [37]

    Vaziri A, Gopinath A 2008 Nat. Mater. 7 15

    [38]

    Carlsson A E 2006 Biophys. J. 90 413

    [39]

    Yamaoka H, Matsushita S, Shimada Y, Adachi T 2012 Biomech. Model. Mechanobiol. 11 291

    [40]

    Lecuit T, Lenne P-F, Munro E 2011 Annu. Rev. Cell Dev. Biol. 27 157

    [41]

    Carlsson A E 2011 New J. Phys. 13 073009

    [42]

    Buenemann M, Levine H, Rappel W-J, Sander L M 2010 Biophys. J. 99 50

    [43]

    Zaman M H, Kamm R D, Matsudaira P, Lauffenburger D A 2005 Biophys. J. 89 1389

    [44]

    Cirit M, Krajcovic M, Choi C K, Welf E S, Horwitz A F, Haugh J M 2010 PLoS Comput Biol 6 e1000688

    [45]

    Kabla A J, 2011 arXiv11084286 Phys. Q-Bio.

    [46]

    Sun L, Chang Y F 2003 Journal of Huazhong Normal University: Natural Sciences 37 491 (in Chinese) [孙亮, 常云峰 2003 华中师范大学学报:自然科学版 37 491]

    [47]

    Manning M L, Foty R A, Steinberg M S, Schoetz E-M 2010 Proc. Natl. Acad. Sci. 107 12517

    [48]

    Drasdo D, Höhme S 2005 Phys. Biol. 2 133

    [49]

    Szabó B, Szöllösi G J, Gönci B, Jurányi Z, Selmeczi D, Vicsek T 2006 Phys. Rev. E 74 061908

    [50]

    Yang X, Manning M L, Marchetti M C 2014 Soft Matter 10 6477

    [51]

    Gatenby R A, Gawlinski E T 1996 Cancer Res. 56 5745

    [52]

    Owen M R, Byrne H M, Lewis C E 2004 J. Theor. Biol. 226 377

    [53]

    Zhou Y 2012 Ph. D. Thesis (Shanghai: Fudan University) (in Chinese) [周瑜 2012 博士学位论文 (上海:复旦大学)]

    [54]

    Schmitz J E, Kansal A R, Torquato S 2002 Comput. Math. Methods Med. 4 223

    [55]

    Alarcón T, Byrne H M, Maini P K 2004 J. Theor. Biol. 229 395

    [56]

    Gavaghan D J, Brady J M, Behrenbruch C P, Highnam R P, Maini P K 2002 Comput. Math. Methods Med. 4 3

    [57]

    Gevertz J L, Torquato S 2006 J. Theor. Biol. 243 517

    [58]

    Gevertz J L, Gillies G T, Torquato S 2008 Phys. Biol. 5 036010

    [59]

    Gevertz J, Torquato S 2009 Phys. Rev. E 80 051910

    [60]

    Bellomo N, Preziosi L 2000 Math. Comput. Model. 32 413

    [61]

    Scalerandi M, Sansone B C, Condat C A 2001 Phys. Rev. E 65 011902

    [62]

    Scalerandi M, Sansone B C 2002 Phys. Rev. Lett. 89 218101

    [63]

    Kim Y, Friedman A 2010 Bull. Math. Biol. 72 1029

    [64]

    McElwain D L S, Pettet G J 1993 Bull. Math. Biol. 55 655

    [65]

    Chen C Y, Byrne H M, King J R 2001 J. Math. Biol. 43 191

    [66]

    Roose T, Netti P A, Munn L L, Boucher Y, Jain R K 2003 Microvasc. Res. 66 204

    [67]

    Gatenby R A, Gawlinski E T, Gmitro A F, Kaylor B, Gillies R J 2006 Cancer Res. 66 5216

    [68]

    Gerisch A, Chaplain M A J 2008 J. Theor. Biol. 250 684

    [69]

    Macklin P, Lowengrub J 2007 J. Theor. Biol. 245 677

    [70]

    Gardner M 1970 Sci. Am. 223 120

    [71]

    Raabe D 1998 in Comput. Mater. Sci. (Weinheim Germany: Wiley-VCH Verlag GmbH & Co. KGaA) pp201–-224

    [72]

    Jiao Y, Torquato S 2013 Phys. Rev. E 87 052707

    [73]

    Wolfram S 1983 Rev. Mod. Phys. 55 601

    [74]

    Torquato S 2002 Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Berlin, Heidelberg: Springer Science & Business Media) pp189-192

    [75]

    Gevertz J L, Torquato S 2008 PLoS Comput Biol 4 e1000152

    [76]

    Burridge K, Chrzanowska-Wodnicka M 1996 Annu. Rev. Cell Dev. Biol. 12 463

    [77]

    Sarntinoranont M, Rooney F, Ferrari M 2003 Ann. Biomed. Eng. 31 327

    [78]

    Gordon V D, Valentine M T, Gardel M L, Andor-Ardó D, Dennison S, Bogdanov A A, Weitz D A, Deisboeck T S 2003 Exp. Cell Res. 289 58

    [79]

    La L, Cn R, Sh B 1983 Lab. Investig. J. Tech. Methods Pathol. 49 636

    [80]

    Boyle J O, Hakim J, Koch W, van der Riet P, Hruban R H, Roa R A, Correo R, Eby Y J, Ruppert J M, Sidransky D 1993 Cancer Res. 53 4477

    [81]

    Stetler-Stevenson W G, Aznavoorian S, Liotta L A 1993 Annu. Rev. Cell Biol. 9 541

    [82]

    Lawrence J A, Steeg P S 1996 World J. Urol. 14 124

    [83]

    Cai Y 2011 Ph. D. Thesis (Shanghai: Fudan University) (in Chinese) [蔡彦 2011博士学位论文 (上海:复旦大学)]

    [84]

    Gevertz J L 2011 Comput. Math. Methods Med. 2011 e830515

    [85]

    Enderling H, Chaplain M A J, Anderson A R A, Vaidya J S 2007 J. Theor. Biol. 246 245

    [86]

    Jiao Y, Berman H, Kiehl T-R, Torquato S 2011 PLoS One 6 e27323

    [87]

    Gevertz J 2012 Phys. Rev. E 85 041914

  • [1]

    Coffey D S 1998 Nat. Med. 4 882

    [2]

    Anderson A R A 2005 Math. Med. Biol. 22 163

    [3]

    Anderson A R A, Weaver A M, Cummings P T, Quaranta V 2006 Cell 127 905

    [4]

    Deisboeck T S, Berens M E, Kansal A R, Torquato S, Stemmer-Rachamimov A O, Chiocca E A 2001 Cell Prolif. 34 115

    [5]

    Fidler I J 2003 Nat. Rev. Cancer 3 453

    [6]

    Frieboes H B, Zheng X, Sun C-H, Tromberg B, Gatenby R, Cristini V 2006 Cancer Res. 66 1597

    [7]

    Hanahan D, Weinberg R A 2000 Cell 100 57

    [8]

    Kerbel R S 1990 Adv. Cancer Res., edited by George F. Vande Woude and George Klein (Waltham, Massachusetts: Academic Press) pp87–-132

    [9]

    Liotta L A, Kohn E C 2003 Nat. Genet. 33 10

    [10]

    Gatenby R A 1996 Eur. J. Cancer 32A 722

    [11]

    Fearon E R, Vogelstein B 1990 Cell 61 759

    [12]

    Jiao Y, Torquato S 2011 PLoS Comput. Biol. 7 e1002314

    [13]

    Jiao Y, Torquato S 2012 AIP Adv. 2 011003

    [14]

    Anderson A R A, Chaplain M a J 1998 Bull. Math. Biol. 60 857

    [15]

    Anderson A R A, Quaranta V 2008 Nat. Rev. Cancer 8 227

    [16]

    Brú A, Casero D 2006 J. Theor. Biol. 243 171

    [17]

    Byrne H M 2010 Nat. Rev. Cancer 10 221

    [18]

    Byrne H M, Alarcon T, Owen M R, Webb S D, Maini P K 2006 Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 364 1563

    [19]

    Gatenby R A, Maini P K 2003 Nature 421 321

    [20]

    Guiot C, Pugno N, Delsanto P P, Deisboeck T S 2007 Phys. Biol. 4 P1

    [21]

    Helmlinger G, Netti P A, Lichtenbeld H C, Melder R J, Jain R K 1997 Nat. Biotechnol. 15 778

    [22]

    Hogan M C, Lee A, Solberg L A, Thomé S D 2002 Am. J. Hematol. 70 55

    [23]

    KANSAL A R, TORQUATO S, HARSH IV G R, CHIOCCA E A, DEISBOECK T S 2000 J. Theor. Biol. 203 367

    [24]

    KANSAL A R, TORQUATO S, CHIOCCA E A, DEISBOECK T S 2000 J. Theor. Biol. 207 431

    [25]

    T P Padera, Kadambi A, Di Tomaso E, Carreira C M, Brown E B, Boucher Y, Choi N C, Mathisen D, Wain J, Mark E J, Munn L L, Jain R K 2002 Science 296 1883

    [26]

    Paszek M J, Zahir N, Johnson K R, Lakins J N, Rozenberg G I, Gefen A, Reinhart-King C A, Margulies S S, Dembo M, Boettiger D, Hammer D A, Weaver V M 2005 Cancer Cell 8 241

    [27]

    Torquato S 2011 Phys. Biol. 8 015017

    [28]

    Schrödinger E 1992 What Is Life?: With Mind and Matter and Autobiographical Sketches (Cambridge, UK: Cambridge University Press)

    [29]

    Fernandez-Gonzalez R, Simoes S de M, Röper J-C, Eaton S, Zallen J A 2009 Dev. Cell 17 736

    [30]

    Wozniak M A, Chen C S 2009 Nat. Rev. Mol. Cell Biol. 10 34

    [31]

    Boey S K, Boal D H, Discher D E 1998 Biophys. J. 75 1573

    [32]

    Coughlin M F, Stamenović D 2003 Biophys. J. 84 1328

    [33]

    Gordon D, Bernheim-Groswasser A, Keasar C, Farago O 2012 Phys. Biol. 9 026005

    [34]

    Totsukawa G, Wu Y, Sasaki Y, Hartshorne D J, Yamakita Y, Yamashiro S, Matsumura F 2004 J. Cell Biol. 164 427

    [35]

    Friedl P, Bröcker E-B 2000 Cell. Mol. Life Sci. CMLS 57 41

    [36]

    Grinnell F, Petroll W M 2010 Annu. Rev. Cell Dev. Biol. 26 335

    [37]

    Vaziri A, Gopinath A 2008 Nat. Mater. 7 15

    [38]

    Carlsson A E 2006 Biophys. J. 90 413

    [39]

    Yamaoka H, Matsushita S, Shimada Y, Adachi T 2012 Biomech. Model. Mechanobiol. 11 291

    [40]

    Lecuit T, Lenne P-F, Munro E 2011 Annu. Rev. Cell Dev. Biol. 27 157

    [41]

    Carlsson A E 2011 New J. Phys. 13 073009

    [42]

    Buenemann M, Levine H, Rappel W-J, Sander L M 2010 Biophys. J. 99 50

    [43]

    Zaman M H, Kamm R D, Matsudaira P, Lauffenburger D A 2005 Biophys. J. 89 1389

    [44]

    Cirit M, Krajcovic M, Choi C K, Welf E S, Horwitz A F, Haugh J M 2010 PLoS Comput Biol 6 e1000688

    [45]

    Kabla A J, 2011 arXiv11084286 Phys. Q-Bio.

    [46]

    Sun L, Chang Y F 2003 Journal of Huazhong Normal University: Natural Sciences 37 491 (in Chinese) [孙亮, 常云峰 2003 华中师范大学学报:自然科学版 37 491]

    [47]

    Manning M L, Foty R A, Steinberg M S, Schoetz E-M 2010 Proc. Natl. Acad. Sci. 107 12517

    [48]

    Drasdo D, Höhme S 2005 Phys. Biol. 2 133

    [49]

    Szabó B, Szöllösi G J, Gönci B, Jurányi Z, Selmeczi D, Vicsek T 2006 Phys. Rev. E 74 061908

    [50]

    Yang X, Manning M L, Marchetti M C 2014 Soft Matter 10 6477

    [51]

    Gatenby R A, Gawlinski E T 1996 Cancer Res. 56 5745

    [52]

    Owen M R, Byrne H M, Lewis C E 2004 J. Theor. Biol. 226 377

    [53]

    Zhou Y 2012 Ph. D. Thesis (Shanghai: Fudan University) (in Chinese) [周瑜 2012 博士学位论文 (上海:复旦大学)]

    [54]

    Schmitz J E, Kansal A R, Torquato S 2002 Comput. Math. Methods Med. 4 223

    [55]

    Alarcón T, Byrne H M, Maini P K 2004 J. Theor. Biol. 229 395

    [56]

    Gavaghan D J, Brady J M, Behrenbruch C P, Highnam R P, Maini P K 2002 Comput. Math. Methods Med. 4 3

    [57]

    Gevertz J L, Torquato S 2006 J. Theor. Biol. 243 517

    [58]

    Gevertz J L, Gillies G T, Torquato S 2008 Phys. Biol. 5 036010

    [59]

    Gevertz J, Torquato S 2009 Phys. Rev. E 80 051910

    [60]

    Bellomo N, Preziosi L 2000 Math. Comput. Model. 32 413

    [61]

    Scalerandi M, Sansone B C, Condat C A 2001 Phys. Rev. E 65 011902

    [62]

    Scalerandi M, Sansone B C 2002 Phys. Rev. Lett. 89 218101

    [63]

    Kim Y, Friedman A 2010 Bull. Math. Biol. 72 1029

    [64]

    McElwain D L S, Pettet G J 1993 Bull. Math. Biol. 55 655

    [65]

    Chen C Y, Byrne H M, King J R 2001 J. Math. Biol. 43 191

    [66]

    Roose T, Netti P A, Munn L L, Boucher Y, Jain R K 2003 Microvasc. Res. 66 204

    [67]

    Gatenby R A, Gawlinski E T, Gmitro A F, Kaylor B, Gillies R J 2006 Cancer Res. 66 5216

    [68]

    Gerisch A, Chaplain M A J 2008 J. Theor. Biol. 250 684

    [69]

    Macklin P, Lowengrub J 2007 J. Theor. Biol. 245 677

    [70]

    Gardner M 1970 Sci. Am. 223 120

    [71]

    Raabe D 1998 in Comput. Mater. Sci. (Weinheim Germany: Wiley-VCH Verlag GmbH & Co. KGaA) pp201–-224

    [72]

    Jiao Y, Torquato S 2013 Phys. Rev. E 87 052707

    [73]

    Wolfram S 1983 Rev. Mod. Phys. 55 601

    [74]

    Torquato S 2002 Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Berlin, Heidelberg: Springer Science & Business Media) pp189-192

    [75]

    Gevertz J L, Torquato S 2008 PLoS Comput Biol 4 e1000152

    [76]

    Burridge K, Chrzanowska-Wodnicka M 1996 Annu. Rev. Cell Dev. Biol. 12 463

    [77]

    Sarntinoranont M, Rooney F, Ferrari M 2003 Ann. Biomed. Eng. 31 327

    [78]

    Gordon V D, Valentine M T, Gardel M L, Andor-Ardó D, Dennison S, Bogdanov A A, Weitz D A, Deisboeck T S 2003 Exp. Cell Res. 289 58

    [79]

    La L, Cn R, Sh B 1983 Lab. Investig. J. Tech. Methods Pathol. 49 636

    [80]

    Boyle J O, Hakim J, Koch W, van der Riet P, Hruban R H, Roa R A, Correo R, Eby Y J, Ruppert J M, Sidransky D 1993 Cancer Res. 53 4477

    [81]

    Stetler-Stevenson W G, Aznavoorian S, Liotta L A 1993 Annu. Rev. Cell Biol. 9 541

    [82]

    Lawrence J A, Steeg P S 1996 World J. Urol. 14 124

    [83]

    Cai Y 2011 Ph. D. Thesis (Shanghai: Fudan University) (in Chinese) [蔡彦 2011博士学位论文 (上海:复旦大学)]

    [84]

    Gevertz J L 2011 Comput. Math. Methods Med. 2011 e830515

    [85]

    Enderling H, Chaplain M A J, Anderson A R A, Vaidya J S 2007 J. Theor. Biol. 246 245

    [86]

    Jiao Y, Berman H, Kiehl T-R, Torquato S 2011 PLoS One 6 e27323

    [87]

    Gevertz J 2012 Phys. Rev. E 85 041914

  • [1] Lü Wei, Wang Jing-Hui, Fang Zhi-Ming, Mao Dun. Simulation method of urban evacuation based on mesoscopic cellular automata. Acta Physica Sinica, 2021, 70(10): 100706. doi: 10.7498/aps.70.20210018
    [2] Zhang Shi-Jie, Wang Ying-Ming, Wang Qi, Li Chen-Yu, Li Ri. Simulation of dendrite collision behavior based on cellular automata-lattice Boltzmann model. Acta Physica Sinica, 2021, 70(23): 238101. doi: 10.7498/aps.70.20211292
    [3] Fang Hui, Xue Hua, Tang Qian-Yu, Zhang Qing-Yu, Pan Shi-Yan, Zhu Ming-Fang. Cellular automaton simulation of molten pool migration due to temperature gradient zone melting. Acta Physica Sinica, 2019, 68(4): 048102. doi: 10.7498/aps.68.20181587
    [4] Liang Jing-Yun, Zhang Li-Li, Luan Xi-Dao, Guo Jin-Lin, Lao Song-Yang, Xie Yu-Xiang. Multi-section cellular automata model of traffic flow. Acta Physica Sinica, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [5] Wei Lei, Lin Xin, Wang Meng, Huang Wei-Dong. Cellular automaton simulation of the molten pool of laser solid forming process. Acta Physica Sinica, 2015, 64(1): 018103. doi: 10.7498/aps.64.018103
    [6] Chen Rui, Xu Qing-Yan, Liu Bai-Cheng. Simulation of dendritic competitive growth during directional solidification using modified cellular automaton method. Acta Physica Sinica, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [7] Li Ri, Shen Huan-Di, Feng Chang-Hai, Pan Hong, Feng Chuan-Ning. A novel solute redistribution model for cellular automaton and its validification. Acta Physica Sinica, 2013, 62(18): 188106. doi: 10.7498/aps.62.188106
    [8] Yong Gui, Huang Hai-Jun, Xu Yan. A cellular automata model of pedestrian evacuation in rooms with squared rhombus cells. Acta Physica Sinica, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [9] Shi Yu-Feng, Xu Qing-Yan, Liu Bai-Cheng. Simulation of dendritic growth for ternary alloys based on modified cellular automaton model. Acta Physica Sinica, 2012, 61(10): 108101. doi: 10.7498/aps.61.108101
    [10] Yang Xiao-Kuo, Cai Li, Kang Qiang, Li Zheng-Cao, Chen Xiang-Ye, Zhao Xiao-Hui. Theoretical study and experimentation of magnetic quantum-dot cellular automata corner structure. Acta Physica Sinica, 2012, 61(9): 097503. doi: 10.7498/aps.61.097503
    [11] Jing Ming, Deng Wei, Wang Hao, Ji Yan-Jie. Two-lane cellular automaton traffic model based on car following behavior. Acta Physica Sinica, 2012, 61(24): 244502. doi: 10.7498/aps.61.244502
    [12] Wu Meng-Wu, Xiong Shou-Mei. Modeling of regular eutectic growth of binary alloy basedon cellular automaton method. Acta Physica Sinica, 2011, 60(5): 058103. doi: 10.7498/aps.60.058103
    [13] Zheng Liang, Ma Shou-Feng, Jia Ning. The cellular automaton model of traffic flow based on the driving behavior. Acta Physica Sinica, 2010, 59(7): 4490-4498. doi: 10.7498/aps.59.4490
    [14] Huang Feng, Di Hong-Shuang, Wang Guang-Shan. Modelling of solidification microstructure evolution of twin-roll casting magnesium strip using cellular automaton. Acta Physica Sinica, 2009, 58(13): 313-S318. doi: 10.7498/aps.58.313
    [15] Li Qing-Ding, Dong Li-Yun, Dai Shi-Qiang. Investigation on traffic bottleneck induce by bus stopping with a two-lane cellular automaton model. Acta Physica Sinica, 2009, 58(11): 7584-7590. doi: 10.7498/aps.58.7584
    [16] Zhang Wen-Zhu, Yuan Jian, Yu Zhe, Xu Zan-Xin, Shan Xiu-Ming. Study of the global behavior of wireless sensor networks based on cellular automata. Acta Physica Sinica, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [17] Ge Hong-Xia, Zhu Hui-Bing, Dai Shi-Qiang. Cellular automaton traffic flow model considering intelligent transportation system. Acta Physica Sinica, 2005, 54(10): 4621-4626. doi: 10.7498/aps.54.4621
    [18] Mou Yong-Biao, Zhong Cheng-Wen. Cellular automaton model of traffic flow based on safety driving. Acta Physica Sinica, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
    [19] Li Qiang, Li Dian-Zhong, Qian Bai-Nian. Modeling of dendritic growth by means of cellular automaton method. Acta Physica Sinica, 2004, 53(10): 3477-3481. doi: 10.7498/aps.53.3477
    [20] TAN YUN-LIANG, ZHOU HUI, WANG YONG-JAI, MA ZHI-TAO. PHYSICAL CELLULAR AUTOMATON THEORY FOR SIMULATING THE FAILURE PROCESS OF MICRO-HETEROGENEOUS MATERIAL. Acta Physica Sinica, 2001, 50(4): 704-710. doi: 10.7498/aps.50.704
Metrics
  • Abstract views:  4984
  • PDF Downloads:  818
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2014
  • Accepted Date:  20 January 2015
  • Published Online:  05 March 2015

/

返回文章
返回