Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Plasmonic lens with long focal length and tight focusing under illumination of a radially polarized light

Lu Yun-Qing Hu Si-Leng Lu Yi Xu Ji Wang Jin

Citation:

Plasmonic lens with long focal length and tight focusing under illumination of a radially polarized light

Lu Yun-Qing, Hu Si-Leng, Lu Yi, Xu Ji, Wang Jin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Plasmonic lens (PL) is a nano-optical device, with which a tight focusing spot in a subwavelength-scale can be achieved by exciting and controlling surface plasmon polaritons (SPPs), thus the diffraction limit can be broken for attaining the shorter effective wavelength of the SPPs. The key issue in studying the PL is to achieve a tight focusing point and focus-control effectively. Optimal plasmonic focusing can be achieved by utilizing the radially polarized light and the rotational symmetric structures of the PL. Radially polarized light is a cylindrical vector beam whose local polarization of electric field is always parallel to the radial direction. As a radially polarized light is used as the incident light in a PL, the SPPs can be excited in all directions, so as to increase the efficiency of focussing. The focussing efficiency can be further increased, and the characteristics of the focus, such as spot size, shape, and strength etc., can be manipulated through appropriate designs of the PL structures. In this work, under an illumination of a radially polarized light, a new type of plasmonic lens is proposed to achieve a long depth of focus (DOF), a long focal length, and a sub-wavelength-scale tight focussing spot. This kind of plasmonic lens consists of a T-shape micro-hole, concentric rings, and multi-level step-like structures. The focussing properties of such plasmonic lenses are analyzed in terms of the finite element method (FEM). Simulation results show that SPPs can be excited efficiently in such structures and the tight-focusing is realized via the multiple-beam interference between the light radiating from the concentric rings and the transmitted light from the center hole. The T-shape micro-hole and step-like concentric ring structures can provide control for the phase modulation and the propagation direction of the SPPs along the bottom of the groove, thus leading to a compressed focal spot, a longer focal length, an increased depth of focus, and to improving the focussing properties. In an optimized PL design, a focal spot of ~2.5λ0 DOF, ~0.388λ0 FWHM, and ~3.22λ0 focal length is achieved under the illumination of a radially polarized light (λ0=632.8 nm). The PL structure is compact, and can be easily integrated with other nano-devices. The PL proposed above has potential applications in nano-scale photonic integration, near-field imaging and sensing, nano-photolithography, and in other related areas.
    • Funds: Project supported by the Nanjing University of Posts and Telecommunications Foundation, China (Grant Nos. NY211060, NY213028, NY212008), and the Jiangsu Provincial Research Foundation for Basic Research, China (Grant No. BK20131383).
    [1]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [2]

    Raether H 1988 Surface plasmons on smooth surfaces (Berlin Heidelberg: Springer)

    [3]

    Ghaemi H F, Thio T, Grupp D E, Ebbesen T W, Lezec H J 1998 Phys. Rev. B 58 6779

    [4]

    Martin-Moreno L, Garcia-Vidal F, Lezec H, Pellerin K, Thio T, Pendry J, Ebbesen T 2001 Phys. Rev. Lett. 86 1114

    [5]

    Lezec H J, Degiron A, Devaux E, Linke R, Martin-Moreno L, Garcia-Vidal F, Ebbesen T W 2002 Science 297 820

    [6]

    Zheng G G, Xu L H, Pei S X, Chen Y Y 2014 Chin. Phys. B 23 034213

    [7]

    Chen J, Wang C, Lu G, Li W, Xiao J, Gong Q 2012 Opt. Express. 20 17734

    [8]

    Wang J, Fu Y Q 2013 Chin. Phys. B 22 090206

    [9]

    Zhang M, Wang J, Tian Q 2013 Opt. Express. 21 9414

    [10]

    Chen W, Abeysinghe D C, Nelson R L, Zhan Q 2009 Nano Lett. 9 4320

    [11]

    Yi J M, Cuche A, Devaux E, Genet C, Ebbesen T W 2014 ACS Photonics 1 365

    [12]

    Peng R, Li X, Zhao Z, Wang C, Hong M, Luo X 2014 Plasmonics 9 55

    [13]

    Chen J 2013 Plasmonics 8 931

    [14]

    Song W T, Lin F, Fang Z Y, Zhu X 2010 Acta Phys. Sin. 59 6921 (in Chinese) [宋文涛, 林峰, 方哲宇, 朱星 2010 物理学报 59 6921]

    [15]

    Ebbesen T W, Lezec H, Ghaemi H, Thio T, Wolff P 1998 Nature 391 667

    [16]

    Genet C, Ebbesen T W 2007 Nature 445 39

    [17]

    Goh X M, Lin L, Roberts A 2011 J. Opt. Soc. Am. B 28 547

    [18]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [19]

    Smolyaninov I I, Hung Y J, Davis C C 2007 Science 315 1699

    [20]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2008 Nature 453 757

    [21]

    Lee B, Kim S, Kim H, Lim Y 2010 Prog. Quantum Electron. 34 47

    [22]

    Li L, Li T, Wang S, Zhu S, Zhang X 2011 Nano Lett. 11 4357

    [23]

    Jia B, Shi H, Li J, Fu Y, Du C, Gu M 2009 Appl. Phys. Lett. 94 151912

    [24]

    Min C J, Shen Z, Shen J F, Zhang Y Q, Fang H, Yuan G H, Du L, Zhu S, Lei T, Yuan X C 2013 Nat. Commun. 4 2891

    [25]

    Zhao W Q, Tang F, Qiu L R, Liu D L 2013 Acta Phys. Sin. 62 054201 (in Chinese) [赵维谦, 唐芳, 邱丽荣, 刘大礼 2013 物理学报 62 054201]

    [26]

    Wang Z, Gao C Q, Xin J T 2012 Acta Phys. Sin. 61 124209 (in Chinese) [王铮, 高春清, 辛璟焘 2012 物理学报 61 124209]

    [27]

    Wang H F, Shi L P, Lukyanchuk B, Sheppard C, Chong C T 2008 Nature Photonics 2 501

    [28]

    Jackson J D 1999 Classical electrodynamics (3rd ed.) (New York: Wiley)

    [29]

    Vial A, Grimault A S, Macías D, Barchiesi D, de La Chapelle M L 2005 Phys. Rev. B 71 085416

    [30]

    Rakic A D, Djurišic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

  • [1]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [2]

    Raether H 1988 Surface plasmons on smooth surfaces (Berlin Heidelberg: Springer)

    [3]

    Ghaemi H F, Thio T, Grupp D E, Ebbesen T W, Lezec H J 1998 Phys. Rev. B 58 6779

    [4]

    Martin-Moreno L, Garcia-Vidal F, Lezec H, Pellerin K, Thio T, Pendry J, Ebbesen T 2001 Phys. Rev. Lett. 86 1114

    [5]

    Lezec H J, Degiron A, Devaux E, Linke R, Martin-Moreno L, Garcia-Vidal F, Ebbesen T W 2002 Science 297 820

    [6]

    Zheng G G, Xu L H, Pei S X, Chen Y Y 2014 Chin. Phys. B 23 034213

    [7]

    Chen J, Wang C, Lu G, Li W, Xiao J, Gong Q 2012 Opt. Express. 20 17734

    [8]

    Wang J, Fu Y Q 2013 Chin. Phys. B 22 090206

    [9]

    Zhang M, Wang J, Tian Q 2013 Opt. Express. 21 9414

    [10]

    Chen W, Abeysinghe D C, Nelson R L, Zhan Q 2009 Nano Lett. 9 4320

    [11]

    Yi J M, Cuche A, Devaux E, Genet C, Ebbesen T W 2014 ACS Photonics 1 365

    [12]

    Peng R, Li X, Zhao Z, Wang C, Hong M, Luo X 2014 Plasmonics 9 55

    [13]

    Chen J 2013 Plasmonics 8 931

    [14]

    Song W T, Lin F, Fang Z Y, Zhu X 2010 Acta Phys. Sin. 59 6921 (in Chinese) [宋文涛, 林峰, 方哲宇, 朱星 2010 物理学报 59 6921]

    [15]

    Ebbesen T W, Lezec H, Ghaemi H, Thio T, Wolff P 1998 Nature 391 667

    [16]

    Genet C, Ebbesen T W 2007 Nature 445 39

    [17]

    Goh X M, Lin L, Roberts A 2011 J. Opt. Soc. Am. B 28 547

    [18]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [19]

    Smolyaninov I I, Hung Y J, Davis C C 2007 Science 315 1699

    [20]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2008 Nature 453 757

    [21]

    Lee B, Kim S, Kim H, Lim Y 2010 Prog. Quantum Electron. 34 47

    [22]

    Li L, Li T, Wang S, Zhu S, Zhang X 2011 Nano Lett. 11 4357

    [23]

    Jia B, Shi H, Li J, Fu Y, Du C, Gu M 2009 Appl. Phys. Lett. 94 151912

    [24]

    Min C J, Shen Z, Shen J F, Zhang Y Q, Fang H, Yuan G H, Du L, Zhu S, Lei T, Yuan X C 2013 Nat. Commun. 4 2891

    [25]

    Zhao W Q, Tang F, Qiu L R, Liu D L 2013 Acta Phys. Sin. 62 054201 (in Chinese) [赵维谦, 唐芳, 邱丽荣, 刘大礼 2013 物理学报 62 054201]

    [26]

    Wang Z, Gao C Q, Xin J T 2012 Acta Phys. Sin. 61 124209 (in Chinese) [王铮, 高春清, 辛璟焘 2012 物理学报 61 124209]

    [27]

    Wang H F, Shi L P, Lukyanchuk B, Sheppard C, Chong C T 2008 Nature Photonics 2 501

    [28]

    Jackson J D 1999 Classical electrodynamics (3rd ed.) (New York: Wiley)

    [29]

    Vial A, Grimault A S, Macías D, Barchiesi D, de La Chapelle M L 2005 Phys. Rev. B 71 085416

    [30]

    Rakic A D, Djurišic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

  • [1] Jiang Chi, Geng Tao. The study of tight focusing characteristics of azimuthally polarized vortex beams and the implementation of ultra-long super-resolved optical needle. Acta Physica Sinica, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [2] Zhang Han-Mou, Xiao Fa-Jun, Zhao Jian-Lin. Unidirectional scattering of Si ring-Au split ring nanoantenna excited by tightly focused azimuthally polarized beam. Acta Physica Sinica, 2022, 71(13): 135201. doi: 10.7498/aps.71.20212212
    [3] Xu Lin-Xi, Zhu Rong-Qi, Zhu Zhu-Qing, Gong Li-Ping, Gu Bing. High-purity longitudinal needle-shaped magnetization fields produced in uniaxial crystals. Acta Physica Sinica, 2022, 71(14): 147801. doi: 10.7498/aps.71.20220316
    [4] Xu Huan-Yao, Xu Liang, Shen Xian-Chun, Xu Han-Yang, Sun Yong-Feng, Liu Wen-Qing, Liu Jian-Guo. Analysis of influence of long back focal length on athermal design based on infrared multispectral camera. Acta Physica Sinica, 2021, 70(18): 184201. doi: 10.7498/aps.70.20210217
    [5] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [6] Zhong Zhe-Qiang, Mu Jie, Wang Xiao, Zhang Bin. Analysis of coherent combination characteristics of beam array via tight focusing. Acta Physica Sinica, 2020, 69(9): 094204. doi: 10.7498/aps.69.20200034
    [7] Cao Chong-Yang, Lu Jian-Neng, Zhang Heng-Wen, Zhu Zhu-Qing, Wang Xiao-Lei, Gu Bing. Investigation on magnetization induced by tightly focused azimuthally polarized fractional vortex beam. Acta Physica Sinica, 2020, 69(16): 167802. doi: 10.7498/aps.69.20200269
    [8] Liu Sen-Sen, Song Hua-Dong, Lin Wei-Qiang, Chen Xu-Dong, Pu Ji-Xiong. Synthesis of ununiformly correlated radially polarized partially coherent beam. Acta Physica Sinica, 2019, 68(7): 074201. doi: 10.7498/aps.68.20182289
    [9] Chen Shun-Yi, Ding Pan-Feng, Pu Ji-Xiong. Off axial radially polarized beam and its propagation characteristics. Acta Physica Sinica, 2015, 64(20): 204201. doi: 10.7498/aps.64.204201
    [10] Zhou Ya, Wu Zheng-Mao, Fan Li, Sun Bo, He Yang, Xia Guang-Qiong. Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection. Acta Physica Sinica, 2015, 64(20): 204203. doi: 10.7498/aps.64.204203
    [11] Zhao Wei-Qian, Tang Fang, Qiu Li-Rong, Liu Da-Li. Research status and application on the focusing properties of cylindrical vector beams. Acta Physica Sinica, 2013, 62(5): 054201. doi: 10.7498/aps.62.054201
    [12] Yu Yong-Jiang, Chen Jian-Nong, Yan Jin-Liang, Wang Fei-Fei. Longitudinally polarized subwavelength beam generated by focusing radially modulated Bessel-Gaussian beam. Acta Physica Sinica, 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [13] Xu Kai, Yang Yan-Fang, He Ying, Han Xiao-Hong, Li Chun-Fang. Study on the tight focusing of the local elliptically polarized beam. Acta Physica Sinica, 2010, 59(9): 6125-6130. doi: 10.7498/aps.59.6125
    [14] Song Wen-Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Nanofocusing by phase delayed plasmonic nanostructures illuminated with a linearly polarized light. Acta Physica Sinica, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [15] Long Yong-Bing, Zhang Jian, Wang Guo-Ping. Femtosecond pump-probe technique assisted by surface plasmon resonance. Acta Physica Sinica, 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [16] Xu Xiao-Hui, Li Hui. Scanning photoacoustic mammography with a focused transducer featuring extended focal zone. Acta Physica Sinica, 2008, 57(7): 4623-4628. doi: 10.7498/aps.57.4623
    [17] Gong Hua-Ping, Lü Zhi-Wei, Lin Dian-Yang, Lü Yue-Lan. Dependence of optical limiting characteristics on focal length in stimulated Brillouin scattering. Acta Physica Sinica, 2006, 55(6): 2735-2739. doi: 10.7498/aps.55.2735
    [18] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Single attosecond pulse generation by tightly focused laser beam-electron interaction. Acta Physica Sinica, 2006, 55(5): 2115-2121. doi: 10.7498/aps.55.2115
    [19] Wang Qi, Chen Jian-Xin, Xia Yuan-Qin, Chen De-Ying. . Acta Physica Sinica, 2002, 51(5): 1035-1039. doi: 10.7498/aps.51.1035
    [20] MO DANG, YE XIAN-JING. ELLIPSOMETRIC SPECTRUM AND OPTICAL PROPERTIES OF ION IMPLANTED SILICON. Acta Physica Sinica, 1981, 30(10): 1287-1294. doi: 10.7498/aps.30.1287
Metrics
  • Abstract views:  6220
  • PDF Downloads:  4666
  • Cited By: 0
Publishing process
  • Received Date:  03 August 2014
  • Accepted Date:  19 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回