Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sound velocity and phase transition for low porosity tin at high pressure

Song Ping Cai Ling-Cang Li Xin-Zhu Tao Tian-Jiong Zhao Xin-Wen Wang Xue-Jun Fang Mao-Lin

Citation:

Sound velocity and phase transition for low porosity tin at high pressure

Song Ping, Cai Ling-Cang, Li Xin-Zhu, Tao Tian-Jiong, Zhao Xin-Wen, Wang Xue-Jun, Fang Mao-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Shock and release experiments are performed on the porous Sn with sub-micropores with porosity m=1.01. Time-resolved interfacial velocities between the porous Sn and LiF window are measured with Doppler pins system under seven pressure points from 31.8 GPa to 66.1 GPa. From the interfacial velocity, the Euler longitudinal sound velocities and the bulk sound velocities are obtained. The corresponding Poisson ratio and shear modulus are determined, too. From the transition of longitudinal sound velocity to bulk sound velocity at high pressures, the shock-induced melting of Sn with porosity 1.01 occurs at about 49.1 GPa. With the Euler longitudinal sound velocities, the bulk sound velocities and the shear moduluses of porous and dense Sn, the melting pressure zone of dense Sn can be determined to be between 53.5 GPa and 62.3 GPa. Comparing the melting zone of porous Sn and that of dense Sn, micropores in the material reduce the the shock melting pressure obviously. The Exact shock melting pressure of dense Sn needs further experimental data in the corresponding pressure zone. From the longitudinal velocity of porous Sn in the measured solid zone, no bcc phase transition takes place for this material. This may relate with the micropores in the material or the difference in material component, which needs further investigating.
    • Funds: Project supported by Science and Technology Development Fundation of Chinese Academy of Engineering Physics, China (Grant No. 2013B0101004).
    [1]

    Erhart P, Bringa E M, Kumar M 2005 Phys. Rev. B 72 052104

    [2]

    Burakovsky L, Preston D L, Silbar R R 1999 Phys. Rev. B 61 15011

    [3]

    Burakovsky L, Preston D L, Silbar R R 2000 J. Appl. Phys. 88 6294

    [4]

    Gomez L, Dobry A, Diep H T 2001 Phys. Rev. B 63 224103

    [5]

    Lutsko J F, Wolf D, Phillpot S R 1989 Phys. Rev. B 40 2841

    [6]

    Agrawal P M 2003 J. Chem. Phys. 118 9680

    [7]

    Keifer B, Duffy T S, Uchida T 2002 APS User Activity Report

    [8]

    Schwager B, Ross M, Stefanie Japel, Reinhard Boehler 2010 J. Chem. Phys. 133 084501

    [9]

    Weir S T, Lipp M J, Falabella S 2012 J. Appl. Phys. 111 123529

    [10]

    Hereil P L, Mabire C 2000 J. Phys. IV (France) 10 Pr9-799-Pr9-804

    [11]

    Hu J B, Zhou X M, Dai C D 2008 J. Appl. Phys. 104 083520

    [12]

    Zhernokletov M V, Kovalev A E, Komissarov V V, Zocher M A, Cherne F J 2012 Combust. Expl. Shock+ 48 112

    [13]

    Tang W H, Zhang R Q 1999 Equation of State Theory and Calculation Conspectus (Hunan: National University of Defence Technology Press) p517 (in Chinese) [汤文辉, 张若棋 1999 物态方程理论及计算概论 (湖南: 国防科技大学出版社) 第517 页]

    [14]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) p191 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社)第191页]

    [15]

    Asay J R, Chhabildas L C 1981 in Meyers M A, Murr L E ed: Shock Waves and High-Strain-Rate Phenomena in Metals (New York: Plenum) p417

    [16]

    Servas E M 2001 in Furnish M D, Thadhani N N, Horie Y ed: Shock Compression of Condensed Matter (New York: AIP 2002) p1200

  • [1]

    Erhart P, Bringa E M, Kumar M 2005 Phys. Rev. B 72 052104

    [2]

    Burakovsky L, Preston D L, Silbar R R 1999 Phys. Rev. B 61 15011

    [3]

    Burakovsky L, Preston D L, Silbar R R 2000 J. Appl. Phys. 88 6294

    [4]

    Gomez L, Dobry A, Diep H T 2001 Phys. Rev. B 63 224103

    [5]

    Lutsko J F, Wolf D, Phillpot S R 1989 Phys. Rev. B 40 2841

    [6]

    Agrawal P M 2003 J. Chem. Phys. 118 9680

    [7]

    Keifer B, Duffy T S, Uchida T 2002 APS User Activity Report

    [8]

    Schwager B, Ross M, Stefanie Japel, Reinhard Boehler 2010 J. Chem. Phys. 133 084501

    [9]

    Weir S T, Lipp M J, Falabella S 2012 J. Appl. Phys. 111 123529

    [10]

    Hereil P L, Mabire C 2000 J. Phys. IV (France) 10 Pr9-799-Pr9-804

    [11]

    Hu J B, Zhou X M, Dai C D 2008 J. Appl. Phys. 104 083520

    [12]

    Zhernokletov M V, Kovalev A E, Komissarov V V, Zocher M A, Cherne F J 2012 Combust. Expl. Shock+ 48 112

    [13]

    Tang W H, Zhang R Q 1999 Equation of State Theory and Calculation Conspectus (Hunan: National University of Defence Technology Press) p517 (in Chinese) [汤文辉, 张若棋 1999 物态方程理论及计算概论 (湖南: 国防科技大学出版社) 第517 页]

    [14]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) p191 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社)第191页]

    [15]

    Asay J R, Chhabildas L C 1981 in Meyers M A, Murr L E ed: Shock Waves and High-Strain-Rate Phenomena in Metals (New York: Plenum) p417

    [16]

    Servas E M 2001 in Furnish M D, Thadhani N N, Horie Y ed: Shock Compression of Condensed Matter (New York: AIP 2002) p1200

Metrics
  • Abstract views:  5249
  • PDF Downloads:  400
  • Cited By: 0
Publishing process
  • Received Date:  22 October 2014
  • Accepted Date:  01 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回