Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress in sol-gel autocombustion synthesis of metals and alloys

Zhang Xin-Wei Hua Zheng-He Jiang Yu-Wen Yang Shao-Guang

Citation:

Progress in sol-gel autocombustion synthesis of metals and alloys

Zhang Xin-Wei, Hua Zheng-He, Jiang Yu-Wen, Yang Shao-Guang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • This paper is an overview of the progress of sol-gel autocombustion synthesis of metals and metal alloys. Sol-gel is a convenient method to synthesize a variety of oxides by mixing of different elements at an atomic level. Autocombustion synthesis is a self-sustaining process caused by the heat generated from its exothermic reaction. By combining these two methods, the sol-gel autocombustion method is introduced in the synthesis of metals and metal alloys. The experimental principle and technological route are introduced in detail in this review. By using metal nitrate, citric acid etc. as starting materials, the dried gels are prepared through sol-gel routine. Under the protection of inert gas, the autocombustion could be activated at low temperature in a tube furnace. After the autocombustion was activated, the gel burned violently, and a large amount of white gas was refleased. During heating the gel, mass spectrum shows that the H2, CO and CH4 areflevidently identified near the combustion temperature. They are well known reducing agents, which can be used in the redox reaction for synthesizing metals from oxides. Based on the data obtained from the TG-DTA and mass spectrum analysis, it is speculated that there are mainly five reactions appearing during the burning of the gel at high temperature: exothermic reaction between fuel and oxidant; metal oxide(s) formation by decomposition of the nitrate(s); generation of CH4, CO and H2 by the decomposition of CHx containing groups of complexing agent; exothermic reaction between CH4/CO/H2 and oxidant; the reduction of metals from their corresponding metal oxides by CH4 and H2 in nascent product. The application of this method to the synthesis of metals and metal alloys is shown by realized examples. This method shows many advantages in the synthesis of metals, such as simple apparatus, inexpensive raw materials, a relatively simple preparation process, and fine powder products with high homogeneity. Moreover, very low temperature is required to activate the reaction, and then the combustion can continue to take place without needing additional energy supply. This method has potential applications in experimental material reflearches.
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2009245), and the National Natural Science Foundation of China (Grant No. 61176087).
    [1]

    Shin S J, Kim Y H, Kim C W, Cha H G, Kim Y J, Kang Y S 2007 Current Applied Physics 7 404

    [2]

    Sun Y P, Li X Q, Cao J, Zhang W X, Wang H P 2006 Advances in Colloid and Interface Science 120 47

    [3]

    Inaba M, Awa M, Akiyoshi E, Otake Y 1986 Journal of Materials Science Letters 5 16

    [4]

    Gleiter H 1989 Progress in Materials Science 33 223

    [5]

    Hench L L, West j K 1990 Chemical Reviews 90 33

    [6]

    Lu Y F, Ganguli R, Drewien C A, Anderson M T, Brinker C J, Gong W L, Guo Y X, Soyez H, Dunn B, Huang M H, Zink J I 1997 Nature 389 6649

    [7]

    Lu Y, Yin Y D, Mayers B T, Xia Y N 2002 Nano Letters 2 183

    [8]

    Murata K, Aoki M, Suzuki T, Harada T, Kawabata H, Komori T, Ohseto F, Ueda K, Shinkai S 1994 Journal of the American Chemical Society 116 6664

    [9]

    Moore J J, Feng H J 1995 Progress in Materials Science 39 243

    [10]

    Kecskes L J, Niiler A 1989 Journal of the American Ceramic Society 72 655

    [11]

    Rice R W 1991 Journal of Materials Science 26 6533

    [12]

    Mukasyan A, Dinka P 2007 International Journal of Self-Propagating High-Temperature Synthesis 16 23

    [13]

    Roy S, Dassharma A, Roy S N, Maiti H S 1993 Journal of Materials Research 8 2761

    [14]

    Chakrabarti N, Maiti H S 1997 Materials Letters 30 169

    [15]

    Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C 2011 Materials Research Bulletin 46 2204

    [16]

    Ahlawat A, Sathe V G, Reddy V R, Gupta A 2011 Journal of Magnetism and Magnetic Materials 323 2049

    [17]

    Hou J G, Qu Y F, Ma W B, Shan D 2007 Journal of Materials Science 42 6787

    [18]

    Jiang Y W 2012 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese) [蒋毓文 2012 博士学位论文(南京: 南京大学)]

    [19]

    Rice R W 1991 Journal of Materials Science 26 6533

    [20]

    Wu K H, Ting T H, Li M C, Ho W D 2006 Journal of Magnetism and Magnetic Materials 298 25

    [21]

    Pathak L C, Singh T B, Das S, Verma A K, Ramachandrarao P 2002 Materials Letters 57 380

    [22]

    Pradeep A, Priyadharisini P, Chandrasekaran G 2008 Materials Chemistry and Physics 112 572

    [23]

    Yue Z X, Guo W Y, Zhou J, Gui Z L, Li L T 2004 Journal of Magnetism and Magnetic Materials 270 216

    [24]

    Srinivasan G, Seehra M 1984 Phys. Rev. B 29 6295

    [25]

    Jiang Y W, Yang S G, Hua Z H, Huang H B 2009 Angewandte Chemie 121 8681

    [26]

    Hua Z H, Deng Y, Li K N, Yang S G 2012 Nanoscale Research Letters 7 129

    [27]

    Deshpande K, Mukasyan A, Varma A, 2004 Chem. Mater., 16 4896

    [28]

    Hua Z H, Cao Z W, Deng Y, Jiang Y W, Yang S G 2011 Materials Chemistry and Physics 126 542

    [29]

    Denton A R, Ashcroft N W 1991 Physical Review A 43 3161

    [30]

    Li P Y, Jiang W, Li F S 2013 Chem. Lett. 42 816

    [31]

    Li P Y, Zhang P, Li F S, Jiang W, Cao Z H 2013 J. Sol-Gel Sci. Technol. 68 261

    [32]

    Li P Y, Jiang W, Li F S 2013 J. Sol-Gel Sci. Technol. 66 533

    [33]

    Li P Y, Syed X, Meng X K 2012 Journal of alloys and compounds 512 47

    [34]

    Li P Y, Cao Z H, Meng X K 2012 Dalton Trans 41 12101

    [35]

    Kumar A, Wolf E E, Mukasyan A S 2011 AIChE Journal 57 2207

    [36]

    Liu Q X, Wang C X, Zhang W, Wang G W 2003 Chemical Physics Letters 382 1

    [37]

    Jiang Y W, Yang S G, Hua Z H, Gong J F, Zhao X N 2011 Materials reflearch bulletin 46 2531

    [38]

    Ma E 2005 Progress in Materials Science 50 413

    [39]

    Murray J L 1984 Metallurgical Transactions a-Physical Metallurgy and Materials Science 15 261

    [40]

    Xu J, White T, Li P, He C H, Han Y F 2010 J. Am. Chem. Soc. 132 13172

    [41]

    Kucheyev S O, Hayes J R, Biener J, Huser T, Talley C E, Hamza AV 2006 Appl. Phys. Lett. 89 053102

    [42]

    Biener J, Hodge A M, Hamza A V, Hsiung L M, Satcher J H 2005 J. Appl. Phys. 97 024301

    [43]

    Chandrappa G T, Steunou N, Livage J 2002 Nature 416 702

    [44]

    Arabatzis I M, Falara P 2003 Nano. Lett. 3 249

    [45]

    Carn F, Saadaoui H, Masse P, Ravaine S, Julian-Lopez B, Sanchez C, Deleuze H, Talham D R, Backov R 2006 Langmuir 22 5469

    [46]

    Bao Z H, Ernst E M, Yoo S, Sandhage K H 2009 Adv. Mater. 21 474

    [47]

    Gao D Q, Yang G J, Zhu Z H, Zhang J, Yang Z L, Zhang Z P, Xue D S 2012 Journal of Materials Chemistry 22 9462

    [48]

    Fang X S, Ye C H, Zhang L D, Wang Y H, Wu Y C 2005 Advanced Functional Materials 15 63

    [49]

    Ye C H, Fang X S, Li G H, Zhang L D 2004 Applied Physics Letters 85 3035

    [50]

    Kim M R, Park S Y, Jang D J 2010 Journal of Physical Chemistry C 114 6452

    [51]

    Li Y C, Ye M F, Yang C H, Li X H, Li Y F 2005 Advanced Functional Materials 15 433

    [52]

    Jiang Y W, Gong J F, Yang S H, Lan C Y, Yang S G 2012 Materials Research Innovations VOL 16 257

    [53]

    Jiang Y W, Lan C Y, Yang S H, Yang S G 2012 Materials Letters 89 269

    [54]

    Yang S G, Jiang Y W, Hua Z H, Huang H B 2009 CN Patent ZL2009 1 0030207 2

    [55]

    Warren S C, Perkins M R, Adams A M, Kamperman M, Burns A A, Arora H, Herz E, Suteewong T, Sai H, Li Z 2012 Nature Materials 11 460

    [56]

    Xu L Q, Huang H F, Tang S L, Chen L Y, Xie R, Xia W B, Wei J, Zhong W, Du Y W 2014 J. Sol-Gel Sci. Technol. 69 130

    [57]

    Xu L Q, Chen L Y, Huang H F, Xie R, Xia W B, Wei J, Zhong W, Tang S L, Du Y W 2014 Journal of Alloys and Compounds 593 93

    [58]

    Yang S H, Liu S J, Jiang Y W, Yang S G 2012 Materials Research Innovations 16 47

    [59]

    Shi L, Zeng C Y, Jin Y Z, Wang T J, Tsubaki N 2012 Catalysis Science & Technology 2 2569

    [60]

    Shi L, Yang R Q, Tao K, Yoneyama Y, Tan Y S, Tsubaki N 2012 Catalysis Today 185 54

    [61]

    Shi L, Jin Y Z, Xing C, Zeng C Y, Kawabata T, Imai K, Matsuda K, Tan Y S, Tsubaki N 2012 Applied Catalysis A: General 435-436 217

    [62]

    Pienluphon R, Shi L, Sun J, Niu W Q, Lu P, Zhu P F, Vitidsant T, Yoneyama Y, Chen Q J, Tsubaki N 2014 Catalysis Science & Technology 4 3099

    [63]

    Tao K, Zhou S H, Zhang Q J, Kong C L, Ma Q X, Tsubaki N Chen L 2013 RSC Advances 3 22285

  • [1]

    Shin S J, Kim Y H, Kim C W, Cha H G, Kim Y J, Kang Y S 2007 Current Applied Physics 7 404

    [2]

    Sun Y P, Li X Q, Cao J, Zhang W X, Wang H P 2006 Advances in Colloid and Interface Science 120 47

    [3]

    Inaba M, Awa M, Akiyoshi E, Otake Y 1986 Journal of Materials Science Letters 5 16

    [4]

    Gleiter H 1989 Progress in Materials Science 33 223

    [5]

    Hench L L, West j K 1990 Chemical Reviews 90 33

    [6]

    Lu Y F, Ganguli R, Drewien C A, Anderson M T, Brinker C J, Gong W L, Guo Y X, Soyez H, Dunn B, Huang M H, Zink J I 1997 Nature 389 6649

    [7]

    Lu Y, Yin Y D, Mayers B T, Xia Y N 2002 Nano Letters 2 183

    [8]

    Murata K, Aoki M, Suzuki T, Harada T, Kawabata H, Komori T, Ohseto F, Ueda K, Shinkai S 1994 Journal of the American Chemical Society 116 6664

    [9]

    Moore J J, Feng H J 1995 Progress in Materials Science 39 243

    [10]

    Kecskes L J, Niiler A 1989 Journal of the American Ceramic Society 72 655

    [11]

    Rice R W 1991 Journal of Materials Science 26 6533

    [12]

    Mukasyan A, Dinka P 2007 International Journal of Self-Propagating High-Temperature Synthesis 16 23

    [13]

    Roy S, Dassharma A, Roy S N, Maiti H S 1993 Journal of Materials Research 8 2761

    [14]

    Chakrabarti N, Maiti H S 1997 Materials Letters 30 169

    [15]

    Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C 2011 Materials Research Bulletin 46 2204

    [16]

    Ahlawat A, Sathe V G, Reddy V R, Gupta A 2011 Journal of Magnetism and Magnetic Materials 323 2049

    [17]

    Hou J G, Qu Y F, Ma W B, Shan D 2007 Journal of Materials Science 42 6787

    [18]

    Jiang Y W 2012 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese) [蒋毓文 2012 博士学位论文(南京: 南京大学)]

    [19]

    Rice R W 1991 Journal of Materials Science 26 6533

    [20]

    Wu K H, Ting T H, Li M C, Ho W D 2006 Journal of Magnetism and Magnetic Materials 298 25

    [21]

    Pathak L C, Singh T B, Das S, Verma A K, Ramachandrarao P 2002 Materials Letters 57 380

    [22]

    Pradeep A, Priyadharisini P, Chandrasekaran G 2008 Materials Chemistry and Physics 112 572

    [23]

    Yue Z X, Guo W Y, Zhou J, Gui Z L, Li L T 2004 Journal of Magnetism and Magnetic Materials 270 216

    [24]

    Srinivasan G, Seehra M 1984 Phys. Rev. B 29 6295

    [25]

    Jiang Y W, Yang S G, Hua Z H, Huang H B 2009 Angewandte Chemie 121 8681

    [26]

    Hua Z H, Deng Y, Li K N, Yang S G 2012 Nanoscale Research Letters 7 129

    [27]

    Deshpande K, Mukasyan A, Varma A, 2004 Chem. Mater., 16 4896

    [28]

    Hua Z H, Cao Z W, Deng Y, Jiang Y W, Yang S G 2011 Materials Chemistry and Physics 126 542

    [29]

    Denton A R, Ashcroft N W 1991 Physical Review A 43 3161

    [30]

    Li P Y, Jiang W, Li F S 2013 Chem. Lett. 42 816

    [31]

    Li P Y, Zhang P, Li F S, Jiang W, Cao Z H 2013 J. Sol-Gel Sci. Technol. 68 261

    [32]

    Li P Y, Jiang W, Li F S 2013 J. Sol-Gel Sci. Technol. 66 533

    [33]

    Li P Y, Syed X, Meng X K 2012 Journal of alloys and compounds 512 47

    [34]

    Li P Y, Cao Z H, Meng X K 2012 Dalton Trans 41 12101

    [35]

    Kumar A, Wolf E E, Mukasyan A S 2011 AIChE Journal 57 2207

    [36]

    Liu Q X, Wang C X, Zhang W, Wang G W 2003 Chemical Physics Letters 382 1

    [37]

    Jiang Y W, Yang S G, Hua Z H, Gong J F, Zhao X N 2011 Materials reflearch bulletin 46 2531

    [38]

    Ma E 2005 Progress in Materials Science 50 413

    [39]

    Murray J L 1984 Metallurgical Transactions a-Physical Metallurgy and Materials Science 15 261

    [40]

    Xu J, White T, Li P, He C H, Han Y F 2010 J. Am. Chem. Soc. 132 13172

    [41]

    Kucheyev S O, Hayes J R, Biener J, Huser T, Talley C E, Hamza AV 2006 Appl. Phys. Lett. 89 053102

    [42]

    Biener J, Hodge A M, Hamza A V, Hsiung L M, Satcher J H 2005 J. Appl. Phys. 97 024301

    [43]

    Chandrappa G T, Steunou N, Livage J 2002 Nature 416 702

    [44]

    Arabatzis I M, Falara P 2003 Nano. Lett. 3 249

    [45]

    Carn F, Saadaoui H, Masse P, Ravaine S, Julian-Lopez B, Sanchez C, Deleuze H, Talham D R, Backov R 2006 Langmuir 22 5469

    [46]

    Bao Z H, Ernst E M, Yoo S, Sandhage K H 2009 Adv. Mater. 21 474

    [47]

    Gao D Q, Yang G J, Zhu Z H, Zhang J, Yang Z L, Zhang Z P, Xue D S 2012 Journal of Materials Chemistry 22 9462

    [48]

    Fang X S, Ye C H, Zhang L D, Wang Y H, Wu Y C 2005 Advanced Functional Materials 15 63

    [49]

    Ye C H, Fang X S, Li G H, Zhang L D 2004 Applied Physics Letters 85 3035

    [50]

    Kim M R, Park S Y, Jang D J 2010 Journal of Physical Chemistry C 114 6452

    [51]

    Li Y C, Ye M F, Yang C H, Li X H, Li Y F 2005 Advanced Functional Materials 15 433

    [52]

    Jiang Y W, Gong J F, Yang S H, Lan C Y, Yang S G 2012 Materials Research Innovations VOL 16 257

    [53]

    Jiang Y W, Lan C Y, Yang S H, Yang S G 2012 Materials Letters 89 269

    [54]

    Yang S G, Jiang Y W, Hua Z H, Huang H B 2009 CN Patent ZL2009 1 0030207 2

    [55]

    Warren S C, Perkins M R, Adams A M, Kamperman M, Burns A A, Arora H, Herz E, Suteewong T, Sai H, Li Z 2012 Nature Materials 11 460

    [56]

    Xu L Q, Huang H F, Tang S L, Chen L Y, Xie R, Xia W B, Wei J, Zhong W, Du Y W 2014 J. Sol-Gel Sci. Technol. 69 130

    [57]

    Xu L Q, Chen L Y, Huang H F, Xie R, Xia W B, Wei J, Zhong W, Tang S L, Du Y W 2014 Journal of Alloys and Compounds 593 93

    [58]

    Yang S H, Liu S J, Jiang Y W, Yang S G 2012 Materials Research Innovations 16 47

    [59]

    Shi L, Zeng C Y, Jin Y Z, Wang T J, Tsubaki N 2012 Catalysis Science & Technology 2 2569

    [60]

    Shi L, Yang R Q, Tao K, Yoneyama Y, Tan Y S, Tsubaki N 2012 Catalysis Today 185 54

    [61]

    Shi L, Jin Y Z, Xing C, Zeng C Y, Kawabata T, Imai K, Matsuda K, Tan Y S, Tsubaki N 2012 Applied Catalysis A: General 435-436 217

    [62]

    Pienluphon R, Shi L, Sun J, Niu W Q, Lu P, Zhu P F, Vitidsant T, Yoneyama Y, Chen Q J, Tsubaki N 2014 Catalysis Science & Technology 4 3099

    [63]

    Tao K, Zhou S H, Zhang Q J, Kong C L, Ma Q X, Tsubaki N Chen L 2013 RSC Advances 3 22285

  • [1] Fan Xiao-Zheng, Li Yi-Lian, Wu Yi, Chen Jun-Cai, Xu Guo-Liang, An Yi-Peng. Magnetism and spin transport properties of two-dimensional magnetic semiconductor kagome lattice Nb3Cl8 monolayer. Acta Physica Sinica, 2023, 72(24): 247503. doi: 10.7498/aps.72.20231163
    [2] Jiang Zhou, Jiang Xue, Zhao Ji-Jun. Electronic properties of two-dimensional kagome lattice based on transition metal phthalocyanine heterojunctions. Acta Physica Sinica, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [3] Li Wei, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Classification of magnetic ground states and prediction of magnetic moments of inorganic magnetic materials based on machine learning. Acta Physica Sinica, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [4] Wang He-Yan, Gao Yi-Fan, Liao Jia-Bao, Chen Jun-Cai, Li Yi-Lian, Wu Yi, Xu Guo-Liang, An Yi-Peng. Spin transport characteristics and photoelectric properties of magnetic semiconductor NiBr2 monolayer. Acta Physica Sinica, 2022, 71(9): 097502. doi: 10.7498/aps.71.20212384
    [5] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [6] Tang Gui-De, Li Zhuang-Zhi, Ma Li, Wu Guang-Heng, Hu Feng-Xia. Opportunity and challenge for study of valence electron structure in typical magnetic materials. Acta Physica Sinica, 2020, 69(2): 027501. doi: 10.7498/aps.69.20191655
    [7] Cao Yong-Ze, Zhao Yue. Alternating magnetic force microscopy: simultaneous observation of static and dynamic magnetic field in three-dimensional space. Acta Physica Sinica, 2019, 68(16): 168502. doi: 10.7498/aps.68.20190510
    [8] Chen Min, Wan Ting, Wang Zheng, Luo Zhao-Ming, Liu Jing. One-dimensional magnetic photonic crystal structures with wide absolute bandgaps. Acta Physica Sinica, 2017, 66(1): 014204. doi: 10.7498/aps.66.014204
    [9] Zou Chao, Xu Zhi-Mou, Ma Zhi-Chao, Wu Xing-Hui, Peng Jing. Preparation of BST nanotube and its infrared absorption properties. Acta Physica Sinica, 2015, 64(11): 118101. doi: 10.7498/aps.64.118101
    [10] Hui Yi-Cong, Wang Chun-Qi, Huang Xiao-Zhong. Design and fabrication of broadband radar metamaterial absorber based on the resistor FSS. Acta Physica Sinica, 2015, 64(21): 218102. doi: 10.7498/aps.64.218102
    [11] Wang Qing-Bao, Zhang Zhong, Xu Xi-Jin, Lü Ying-Bao, Zhang Qin. Theoretical and experimental studies on N, Fe, La co-doped anatase TiO2 band adjustment. Acta Physica Sinica, 2015, 64(1): 017101. doi: 10.7498/aps.64.017101
    [12] Zhou Zhuo-Hui, Liu Xiao-Lai, Huang Da-Qing, Kang Fei-Yu. Design and preparation of a low frequency absorber based on hollowed-out cross-shaped meta-material structure. Acta Physica Sinica, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [13] He Qiong, Xu Xiang-Dong, Wen Yue-Jiang, Jiang Ya-Dong, Ao Tian-Hong, Fan Tai-Jun, Huang Long, Ma Chun-Qian, Sun Zi-Qiang. Growth mechanism and optoelectronic properties of vanadium oxide films prepared by Sol-Gel. Acta Physica Sinica, 2013, 62(5): 056802. doi: 10.7498/aps.62.056802
    [14] Hu Yan-Chun, Wang Yan-Wen, Zhang Ke-Lei, Wang Hai-Ying, Ma Heng, Lu Qing-Feng. Hole doping effects on structure and magnetic properties of Sr2FeMoO6. Acta Physica Sinica, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [15] Wu Zhong-Hao, Xu Ming, Duan Wen-Qian. Effects of Fe doping on the crystal structures and photoluminescences of ZnO: Ni thin films prepared by sol-gel method. Acta Physica Sinica, 2012, 61(13): 137502. doi: 10.7498/aps.61.137502
    [16] Xu Guo-Cheng, Pan Ling, Guan Qing-Feng, Zou Guang-Tian. Crystallization of amorphous bismuth titanate. Acta Physica Sinica, 2006, 55(6): 3080-3085. doi: 10.7498/aps.55.3080
    [17] Shao Yuan-Zhi, Zhong Wei-Rong, Ren Shan, Cai Zhi-Su, Gong Lei. Multifractal spectra of growing clusters in nanoscale characterized by small angle x-ray scattering. Acta Physica Sinica, 2005, 54(7): 3290-3296. doi: 10.7498/aps.54.3290
    [18] Liu Jiang-Tao, Zhou Yun-Song, Wang Ai-Ling, Jiang Hong-Wei, Zheng Wu. Theoretical study on the giant magnetoimpedance in coaxial-cable wire and sandwi ched film. Acta Physica Sinica, 2003, 52(11): 2859-2864. doi: 10.7498/aps.52.2859
    [19] WANG YU-XIA, GUO ZHEN, HE HAI-PING, CAO YING, TANG HONG-GUO. EPITAXIAL GROWTH OF (0001)ORIENTED 6H-SiC FILMS ON Si(111) SUBSTRATE BY ORGANIC SOL-GEL FILM ANNEALING. Acta Physica Sinica, 2001, 50(2): 256-261. doi: 10.7498/aps.50.256
    [20] XIE DA-TAO, WU JIN-GUANG, MA GANG, YAN WEN-FEI, ZHOU WEI-JIN, XU GUANG-XIAN, XU DUAN-FU, TAO JING, QIN GUO-GANG. PREPARATION OF Tb3+-ION-DOPED Si-BASED LIGHT-EMITTING MATERIALS WITH SOL-GEL METHOD. Acta Physica Sinica, 1999, 48(9): 1773-1780. doi: 10.7498/aps.48.1773
Metrics
  • Abstract views:  6626
  • PDF Downloads:  600
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2014
  • Accepted Date:  17 February 2015
  • Published Online:  05 May 2015

/

返回文章
返回