Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiscale theory and computational method for biomolecule simulations

Li Wen-Fei Zhang Jian Wang Jun Wang Wei

Citation:

Multiscale theory and computational method for biomolecule simulations

Li Wen-Fei, Zhang Jian, Wang Jun, Wang Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Molecular simulation is one of the most important ways of studying biomolecules. In the last two decades, by combining the molecular simulations with experiments, a number of key features of structure and dynamics of biomolecules have been reflealed. Traditional molecular simulations often use the all-atom model or some coarse grained models. In practical applications, however, these all-atom models and coarse grained models encounter the bottlenecks in accuracy and efficiency, respectively, which hinder their applications to some extent. In reflent years, the multiscale models have attracted much attention in the field of biomolecule simulations. In the multiscale model, the atomistic models and coarse grained models are combined together based on the principle of statistical physics, and thus the bottlenecks encountered in the traditional models can be overcome. The currently available multiscale models can be classified into four categories according to the coupling ways between the all-atom model and coarse gained model. They are 1) hybrid resolution multiscale model, 2) parallel coupling multiscale model, 3) one-way coupling multiscale model, and 4) self-learning multiscale model. All these multiscale strategies have achieved great success in certain aspects in the field of biomolecule simulations, including protein folding, aggregation, and functional motions of many kinds of protein machineries. In this review, we briefly introduce the above-mentioned four multiscale strategies, and the examples of their applications. We also discuss the limitations and advantages, as well as the application scopes of these multiscale methods. The directions for future work on improving these multiscale models are also suggested. Finally, a summary and some prospects are preflented.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174134, 11334004, 11274157, 11174133), and the Natural Science Foundation of Jiangsu Province (Grant No. BK2011546).
    [1]

    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P 2007 Molecular Biology of the Cell (1st Ed.) (New York: Garland Science, Taylor & Francis Group)

    [2]

    Abrahams J P, Leslie A G W, Lutter R, Walker J E 1994 Nature 370 621

    [3]

    Sun B, Wei K J, Zhang B, Zhang X H, Dou S X, Li M, Xi X G 2008 Embo. J. 27 3279

    [4]

    Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT 2009 Cell 139 744

    [5]

    Stigler J, Ziegler F, Gieseke A, Gebhardt J C, Rief M 2011 Science 334 512

    [6]

    Lv C, Gao X, Li W, Xue B, Qin M, Burtnick L D, Zhou H, Cao Y, Robinson R C, Wang W 2014 Nat. Commun. 5 4623

    [7]

    Lindorff-Larsen K, Piana S, Dror RO, Shaw D E 2011 Science 334 517

    [8]

    Zhang J, Li W F, Wang J, Qin M, Wu L, Yan Z Q, Xu W X, Zuo G H, Wang W 2009 Iubmb Life 61 627

    [9]

    Levitt M, Warshel A 1975 Nature 253 694

    [10]

    Li W F, Zhang J, Wang J, Wang W 2008 J. Am. Chem. Soc. 130 892

    [11]

    Duan Y, Kollman P A 1998 Science 282 740

    [12]

    Zhao G P, Perilla J R, Yufenyuy E L, Meng X, Chen B, Ning J Y, Ahn J, Gronenborn A M, Schulten K, Aiken C 2013 Nature 497 643

    [13]

    Guo C, Luo Y, Zhou R H, Wei G H 2012 ACS Nano 6 3907

    [14]

    Xie L G, Luo Y, Lin D D, Xi W H, Yang X J, Wei G H 2014 Nanoscale 6 9752

    [15]

    He J B, Zhang Z Y, Shi Y Y, Liu H Y 2013 J. Chem. Phys. 119 4005

    [16]

    Li W F, Zhang J, Su Y, Wang J, Qin M, Wang W 2007 J. Phys. Chem. B 111 13814

    [17]

    Bian Y, Tan C, Wang J, Sheng Y, Zhang J, Wang W 2014 PLoS Comput. Biol. 10 e1003562

    [18]

    Inanami T, Terada T P, Sasai M 2014 Proc. Natl. Acad. Sci. USA. 111 15969

    [19]

    Huang Y D, Shuai J W 2013 J. Phys. Chem. B 7 11

    [20]

    Takada S 2012 Curr. Opin. Struct. Biol. 22 130

    [21]

    Vendruscolo M, Dobson CM 2011 Current Biology 21 R68

    [22]

    Tozzini V 2010 Q. Rev. Biophys. 43 333

    [23]

    Tozzini V 2005 Curr. Opin. Struc. Biol. 15 144

    [24]

    Xu W X, Lai Z Z, Oliveira R J, Leite V B P, Wang J 2012 J. Phys. Chem. B 116 5152

    [25]

    Yao X Q, Kenzaki H, Murakami S, Takada S 2010 Nature Commun. 1 1116

    [26]

    Moritsugu K, Smith J C 2007 Biophys. J. 93 3460

    [27]

    Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H 2007 J. Phys. Chem. B 111 7812

    [28]

    Zuo G H, Wang J, Wang W 2006 Proteins 63 165

    [29]

    Koga N, Takada S 2001 J. Mol. Biol. 313 171

    [30]

    Clementi C, Nymeyer H, Onuchic J N 2000 J. Mol. Biol. 298 937

    [31]

    Onuchic J N, Luthey-Schulten Z, Wolynes P G 1997 Annu. Rev. Phys. Chem. 48 545

    [32]

    Go N 1983 Annu. Rev. Biophys. Bioeng. 12 183

    [33]

    Zhou H X 2014 Curr. Opin. Struct. Biol. 25 67

    [34]

    Li W F, Yoshii H, Hori N, Kameda T, Takada S 2010 Methods 52 106

    [35]

    Li W F, Takada S 2010 Biophys. J. 99 3029

    [36]

    Li WF, Takada S 2009 J. Chem. Phys. 130 214108

    [37]

    Praprotnik M, Delle Site L, Krefler K 2008 Annu. Rev Phys. Chem. 59 545

    [38]

    Liu P, Shi Q, Lyman E, Voth G A 2008 J. Chem. Phys. 129 114103

    [39]

    Liu P, Voth G A 2007 J. Chem. Phys. 126 045106

    [40]

    Chu J W, Ayton G S, Izvekov S, Voth G 2007 Mol. Phys. 105 167

    [41]

    Lyman E, Zuckerman D M 2006 J. Chem. Theory Comput. 2 656

    [42]

    Lyman E, Ytreflerg F M, Zuckerman D M 2006 Phys. Rev. Lett. 96 028105

    [43]

    Christen M, van Gunsteren W F 2006 J. Chem. Phys. 124 154106

    [44]

    Neri M, Anselmi C, Cascella M, Maritan A, Carloni P 2005 Phys. Rev. Lett. 95 218102

    [45]

    Lwin T Z, Luo R 2005 J. Chem. Phys. 123 194904

    [46]

    Izvekov S, Voth G A 2005 J. Phys. Chem. B 109 2469

    [47]

    Reith D, Putz M, Muller-Plathe F 2003 J. Comput. Chem. 24 1624

    [48]

    Peter C, Krefler K 2010 Faraday Discuss 144 9

    [49]

    Peter C, Krefler K 2009 Soft Matter 5 4357

    [50]

    Praprotnik M, Delle Site L, Krefler K J. Chem. Phys. 123 224106

    [51]

    Moritsugu K, Terada T, Kidera A 2010 J. Chem. Phys. 133 224105

    [52]

    Moritsugu K, Terada T, Kidera A 2012 J. Am. Chem. Soc. 134 7094

    [53]

    Li W F, Wang W, Takada S 2014 Proc. Natl. Acad. Sci. USA 111 10550

    [54]

    Li W F, Terakawa T, Wang W, Takada S 2012 Proc. Natl. Acad. Sci. USA 109 17789

    [55]

    Li W F, Wolynes P G, Takada S 2011 Proc. Natl. Acad. Sci. USA 108 3504

    [56]

    Warshel A, Levitt M 1976 J. Mol. Biol. 103 23

    [57]

    Thorpe I F, Zhou J, Voth G A 2008 J. Phys. Chem. B 112 13079

    [58]

    Trylska J, Tozzini V, McCammon J A 2005 Biophys. J. 89 1455

    [59]

    Hori N, Takada S 2012 J. Chem. Theory Comput. 8 3384

    [60]

    Gohlke H, Kiel C, Case D A 2003 J. Mol. Biol. 330 891

    [61]

    Li W F, Wang J, Zhang J, Wang W 2014 Curr. Opin. Struct. Biol. 30 25

    [62]

    Terakawa T, Takada S 2011 Biophys. J. 101 1450

    [63]

    Bryngelson J D, Onuchic J N, Socci N D, Wolynes P G 1995 Proteins 21 167

    [64]

    Pirchi M, Ziv G, Riven I, Cohen SS, Zohar N, Barak Y, Haran G 2011 Nat. Commun. 2 493

    [65]

    King N P, Jacobitz A W, Sawaya M R, Goldschmidt L, Yeates T O 2010 Proc. Natl. Acad. Sci. USA 107 20732

    [66]

    Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki K I, Yao X Q, Takada S 1992 J. Chem. Theory Comput. 7 1979

    [67]

    Kumar S, Bouzida D, Swendsen R H, Kollman P A, Rosenberg J M 2013 J. Comput. Chem. 13 1011

    [68]

    Heath A P, Kavraki L E, Clementi C 2007 Proteins 68 646

    [69]

    Gront D, Kmiecik S, Kolinski A 2007 J. Comput. Chem. 28 1593

    [70]

    Canutescu A A, Shelenkov A A, Dunbrack R L 2003 Protein Sci. 12 2001

  • [1]

    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P 2007 Molecular Biology of the Cell (1st Ed.) (New York: Garland Science, Taylor & Francis Group)

    [2]

    Abrahams J P, Leslie A G W, Lutter R, Walker J E 1994 Nature 370 621

    [3]

    Sun B, Wei K J, Zhang B, Zhang X H, Dou S X, Li M, Xi X G 2008 Embo. J. 27 3279

    [4]

    Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT 2009 Cell 139 744

    [5]

    Stigler J, Ziegler F, Gieseke A, Gebhardt J C, Rief M 2011 Science 334 512

    [6]

    Lv C, Gao X, Li W, Xue B, Qin M, Burtnick L D, Zhou H, Cao Y, Robinson R C, Wang W 2014 Nat. Commun. 5 4623

    [7]

    Lindorff-Larsen K, Piana S, Dror RO, Shaw D E 2011 Science 334 517

    [8]

    Zhang J, Li W F, Wang J, Qin M, Wu L, Yan Z Q, Xu W X, Zuo G H, Wang W 2009 Iubmb Life 61 627

    [9]

    Levitt M, Warshel A 1975 Nature 253 694

    [10]

    Li W F, Zhang J, Wang J, Wang W 2008 J. Am. Chem. Soc. 130 892

    [11]

    Duan Y, Kollman P A 1998 Science 282 740

    [12]

    Zhao G P, Perilla J R, Yufenyuy E L, Meng X, Chen B, Ning J Y, Ahn J, Gronenborn A M, Schulten K, Aiken C 2013 Nature 497 643

    [13]

    Guo C, Luo Y, Zhou R H, Wei G H 2012 ACS Nano 6 3907

    [14]

    Xie L G, Luo Y, Lin D D, Xi W H, Yang X J, Wei G H 2014 Nanoscale 6 9752

    [15]

    He J B, Zhang Z Y, Shi Y Y, Liu H Y 2013 J. Chem. Phys. 119 4005

    [16]

    Li W F, Zhang J, Su Y, Wang J, Qin M, Wang W 2007 J. Phys. Chem. B 111 13814

    [17]

    Bian Y, Tan C, Wang J, Sheng Y, Zhang J, Wang W 2014 PLoS Comput. Biol. 10 e1003562

    [18]

    Inanami T, Terada T P, Sasai M 2014 Proc. Natl. Acad. Sci. USA. 111 15969

    [19]

    Huang Y D, Shuai J W 2013 J. Phys. Chem. B 7 11

    [20]

    Takada S 2012 Curr. Opin. Struct. Biol. 22 130

    [21]

    Vendruscolo M, Dobson CM 2011 Current Biology 21 R68

    [22]

    Tozzini V 2010 Q. Rev. Biophys. 43 333

    [23]

    Tozzini V 2005 Curr. Opin. Struc. Biol. 15 144

    [24]

    Xu W X, Lai Z Z, Oliveira R J, Leite V B P, Wang J 2012 J. Phys. Chem. B 116 5152

    [25]

    Yao X Q, Kenzaki H, Murakami S, Takada S 2010 Nature Commun. 1 1116

    [26]

    Moritsugu K, Smith J C 2007 Biophys. J. 93 3460

    [27]

    Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H 2007 J. Phys. Chem. B 111 7812

    [28]

    Zuo G H, Wang J, Wang W 2006 Proteins 63 165

    [29]

    Koga N, Takada S 2001 J. Mol. Biol. 313 171

    [30]

    Clementi C, Nymeyer H, Onuchic J N 2000 J. Mol. Biol. 298 937

    [31]

    Onuchic J N, Luthey-Schulten Z, Wolynes P G 1997 Annu. Rev. Phys. Chem. 48 545

    [32]

    Go N 1983 Annu. Rev. Biophys. Bioeng. 12 183

    [33]

    Zhou H X 2014 Curr. Opin. Struct. Biol. 25 67

    [34]

    Li W F, Yoshii H, Hori N, Kameda T, Takada S 2010 Methods 52 106

    [35]

    Li W F, Takada S 2010 Biophys. J. 99 3029

    [36]

    Li WF, Takada S 2009 J. Chem. Phys. 130 214108

    [37]

    Praprotnik M, Delle Site L, Krefler K 2008 Annu. Rev Phys. Chem. 59 545

    [38]

    Liu P, Shi Q, Lyman E, Voth G A 2008 J. Chem. Phys. 129 114103

    [39]

    Liu P, Voth G A 2007 J. Chem. Phys. 126 045106

    [40]

    Chu J W, Ayton G S, Izvekov S, Voth G 2007 Mol. Phys. 105 167

    [41]

    Lyman E, Zuckerman D M 2006 J. Chem. Theory Comput. 2 656

    [42]

    Lyman E, Ytreflerg F M, Zuckerman D M 2006 Phys. Rev. Lett. 96 028105

    [43]

    Christen M, van Gunsteren W F 2006 J. Chem. Phys. 124 154106

    [44]

    Neri M, Anselmi C, Cascella M, Maritan A, Carloni P 2005 Phys. Rev. Lett. 95 218102

    [45]

    Lwin T Z, Luo R 2005 J. Chem. Phys. 123 194904

    [46]

    Izvekov S, Voth G A 2005 J. Phys. Chem. B 109 2469

    [47]

    Reith D, Putz M, Muller-Plathe F 2003 J. Comput. Chem. 24 1624

    [48]

    Peter C, Krefler K 2010 Faraday Discuss 144 9

    [49]

    Peter C, Krefler K 2009 Soft Matter 5 4357

    [50]

    Praprotnik M, Delle Site L, Krefler K J. Chem. Phys. 123 224106

    [51]

    Moritsugu K, Terada T, Kidera A 2010 J. Chem. Phys. 133 224105

    [52]

    Moritsugu K, Terada T, Kidera A 2012 J. Am. Chem. Soc. 134 7094

    [53]

    Li W F, Wang W, Takada S 2014 Proc. Natl. Acad. Sci. USA 111 10550

    [54]

    Li W F, Terakawa T, Wang W, Takada S 2012 Proc. Natl. Acad. Sci. USA 109 17789

    [55]

    Li W F, Wolynes P G, Takada S 2011 Proc. Natl. Acad. Sci. USA 108 3504

    [56]

    Warshel A, Levitt M 1976 J. Mol. Biol. 103 23

    [57]

    Thorpe I F, Zhou J, Voth G A 2008 J. Phys. Chem. B 112 13079

    [58]

    Trylska J, Tozzini V, McCammon J A 2005 Biophys. J. 89 1455

    [59]

    Hori N, Takada S 2012 J. Chem. Theory Comput. 8 3384

    [60]

    Gohlke H, Kiel C, Case D A 2003 J. Mol. Biol. 330 891

    [61]

    Li W F, Wang J, Zhang J, Wang W 2014 Curr. Opin. Struct. Biol. 30 25

    [62]

    Terakawa T, Takada S 2011 Biophys. J. 101 1450

    [63]

    Bryngelson J D, Onuchic J N, Socci N D, Wolynes P G 1995 Proteins 21 167

    [64]

    Pirchi M, Ziv G, Riven I, Cohen SS, Zohar N, Barak Y, Haran G 2011 Nat. Commun. 2 493

    [65]

    King N P, Jacobitz A W, Sawaya M R, Goldschmidt L, Yeates T O 2010 Proc. Natl. Acad. Sci. USA 107 20732

    [66]

    Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki K I, Yao X Q, Takada S 1992 J. Chem. Theory Comput. 7 1979

    [67]

    Kumar S, Bouzida D, Swendsen R H, Kollman P A, Rosenberg J M 2013 J. Comput. Chem. 13 1011

    [68]

    Heath A P, Kavraki L E, Clementi C 2007 Proteins 68 646

    [69]

    Gront D, Kmiecik S, Kolinski A 2007 J. Comput. Chem. 28 1593

    [70]

    Canutescu A A, Shelenkov A A, Dunbrack R L 2003 Protein Sci. 12 2001

  • [1] Liu Qiao, Huang Jia-Chen, Wang Hao, Deng Ya-Jun. Structure and migration mechanism of thin liquid film in vicinity of advancing contact line. Acta Physica Sinica, 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [2] Yang Jian-Yu, Xi Kun, Zhu Li-Zhe. Transition state searching for complex biomolecules: Algorithms and machine learning. Acta Physica Sinica, 2023, 72(24): 248701. doi: 10.7498/aps.72.20231319
    [3] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [4] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [5] Wang Yang, Zhao Ling-Ling. Viscoelastic relaxation time of the monoatomic Lennard-Jones system. Acta Physica Sinica, 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [6] Liang Yi-Ran, Liang Qing. Molecular simulation of interaction between charged nanoparticles and phase-separated biomembranes containning charged lipids. Acta Physica Sinica, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [7] Kang Wen-Bin, Wang Jun, Wang Wei. Conformation of disordered peptides modulated by distributions of charged residues: Case study of random peptides composed of arginines and aspartic acids. Acta Physica Sinica, 2018, 67(5): 058701. doi: 10.7498/aps.67.20172246
    [8] Wang Xi, Li Ming, Ye Fang-Fu, Zhou Xin. Modelling and simulation of DNA hydrogel with a coarse-grained model. Acta Physica Sinica, 2017, 66(15): 150201. doi: 10.7498/aps.66.150201
    [9] Ma Shan, Ma Jun, Yang Guang-Can. Simulation of translocating pore of DNA in non-uniform force by coarse-grained model. Acta Physica Sinica, 2016, 65(14): 148701. doi: 10.7498/aps.65.148701
    [10] Cheng Yun, Li Jie, Jia Ming, Tang Yi-Wei, Du Shuang-Long, Ai Li-Hua, Yin Bao-Hua, Ai Liang. Application status and future of multi-scale numerical models for lithium ion battery. Acta Physica Sinica, 2015, 64(21): 210202. doi: 10.7498/aps.64.210202
    [11] Wu Sha, Li Jin, Zhang Ming-Li, Wang Jun. Coupling analysis of electrocardiogram and electroencephalogram based on improved symbolic transfer entropy. Acta Physica Sinica, 2013, 62(23): 238701. doi: 10.7498/aps.62.238701
    [12] Gao Xiang-Yun, An Hai-Zhong, Fang Wei. Research on fluctuation of bivariate correlation of time series based on complex networks theory. Acta Physica Sinica, 2012, 61(9): 098902. doi: 10.7498/aps.61.098902
    [13] Ji Chao, Zhang Ling-Yun, Dou Shuo-Xing, Wang Peng-Ye. A new method to deal with biomacromolecularimage observed by atomic force microscopy. Acta Physica Sinica, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [14] Xiang Hui, Liu Da-Huan, Yang Qing-Yuan, Mi Jian-Guo, Zhong Chong-Li. Effect of framework flexibility on diffusion of short alkanes in metal-organic framework. Acta Physica Sinica, 2011, 60(9): 093602. doi: 10.7498/aps.60.093602
    [15] Wang Dong-Yi, Xue Chun-Yu, Zhong Chong-Li. A molecular simulation of diffusion mechanism of n-alkanes in copper(Ⅱ) benzene-1,3,5-tricarboxylate metal-organic framework. Acta Physica Sinica, 2009, 58(8): 5552-5559. doi: 10.7498/aps.58.5552
    [16] Ding Sha, Wang Xiao-Hui, Du Yu-Min, Wang Qu-Quan. Third-order nonlinear optical properties of hybrid films of biopolymer-CdSe/ZnS core-shell quantum dots. Acta Physica Sinica, 2006, 55(2): 753-757. doi: 10.7498/aps.55.753
    [17] Feng Guo-Lin, Hou Wei, Dong Wen-Jie. A technique for distinguishing dynamical species in the temperature time series of Yangtze River delta. Acta Physica Sinica, 2006, 55(2): 962-968. doi: 10.7498/aps.55.962
    [18] Xu Jing. Molecular dynamics modelling of adsorption of HEDP on calcite surface. Acta Physica Sinica, 2006, 55(3): 1107-1112. doi: 10.7498/aps.55.1107
    [19] Wang Huan-You, Cao Xiao-Ping, Jiang Yi-Min, Liu Mario. Strain and elasticity of static granular matter. Acta Physica Sinica, 2005, 54(6): 2784-2790. doi: 10.7498/aps.54.2784
    [20] WU MING-CHEN, YUAN DU-PING, ZHU ANG-RU, LU HUI-ZONG, YU LI-MING, WANG ZHAO-YONG. THE VIBRATIONAL MODES OF A MACROMOLECULAR ADSORBATE INVESTIGATED BY PHOTOACOUSTIC SPECTROSCOPY. Acta Physica Sinica, 1987, 36(2): 270-274. doi: 10.7498/aps.36.270
Metrics
  • Abstract views:  7802
  • PDF Downloads:  899
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2015
  • Accepted Date:  05 March 2015
  • Published Online:  05 May 2015

/

返回文章
返回