Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tooth-shaped plasmonic filter based on graphene nanoribbon

Sheng Shi-Wei Li Kang Kong Fan-Min Yue Qing-Yang Zhuang Hua-Wei Zhao Jia

Citation:

Tooth-shaped plasmonic filter based on graphene nanoribbon

Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A class of single tooth-shaped plasmonic filter based on graphene nanoribbon is proposed in this paper, and the structure is numerically analysed by using finite-difference time-domain method. The tooth-shaped structure of graphene nanoribbon can induce a sharp band-stop effect in the transmission spectrum, and the filtering characteristics can be analysed by the scattering matrix method. The effective refractive index of the plasmonic waveguide mode in the graphene nanoribbon is analysed numerically, and it is found that the effective refractive index is influenced by both the chemical potential and the width of the nanoribbon, and when the width is narrower than 30 nm, the higher order mode disappears and the ribbon becomes a single mode waveguide. According to the scattering matrix method, the central frequencies of the transmission dips can be changed by changing the length and the width of the tooth. Flexible electrical tunability of this kind of filter by tiny change of the chemical potential of the graphene through electrical gating is also validated. In addition, transmission spectrum of multi-teeth shaped plasmonic filter is also studied. This kind of structure can possess the broad band-stop filtering property. The influences of tooth number and tooth period on transmission spectrum are investigated. We find that the transmission value can be reduced down to almost zero by adjusting the number of the teeth, also the tooth period can influence the central frequency of the stop band because of the coupling effects between each other. Like the single-tooth filter based on graphene nanoribbon, the multi-tooth broad band-stop filter can also be flexibly tuned by the geometric parameters of the structure and the chemical potential of the graphene. This work provides an effective method of designing graphene based ultra-compact tunable devices, and has extensive potential for designing all-optical integrated architectures for optical networks, communication and computing devices.
    • Funds: Project supported by the National Natural Science Foudation of China (Grant No. 61475084), China Postdoctoral Science Foundation, China (Grant No. 2012M511506), and the Fundamental Research Funds of Shandong University, China (Grant No. 2014JC032).
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [3]

    Lao J, Tao J, Wang Q J, Huang X G 2014 Laser Photon. Rev. 8 569

    [4]

    Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101 (in Chinese) [周丽, 魏源, 黄志祥, 吴先良 2015 物理学报 64 018101]

    [5]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]

    [6]

    Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015203

    [7]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803]

    [8]

    Liu Y Q, Zhang Y P, Zhang H Y, L H H, Li T T, Ren G J 2014 Acta Phys. Sin. 63 075201 (in Chinese) [刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军 2014 物理学报 63 075201]

    [9]

    Lu H, Liu X, Mao D, Wang L, Gong Y 2010 Opt. Express 18 17922

    [10]

    Wang B, Wang G P 2006 Appl. Phys. Lett. 89 133106

    [11]

    Wang G, Lu H, Liu X, Mao D, Duan L 2011 Opt. Express 19 3513

    [12]

    Tao J, Huang X G, Lin X S, Chen J H, Zhang Q, Jin X P 2010 J. Opt. Soc. Am. B 27 323

    [13]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [14]

    Arigong B, Shao J, Ren H, Zheng G, Lutkenhaus J, Kim H, Lin Y, Zhang H 2012 Opt. Express 20 13789

    [15]

    He S, Zhang X, He Y 2013 Opt. Express 21 30664

    [16]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens Frank H L, Javier García de Abajo F 2011 ACS Nano 6 431

    [17]

    Liu Y, Yao J, Chen C, Miao L, Jiang J J 2013 Acta Phys. Sin. 62 063601 (in Chinese) [刘源, 姚洁, 陈驰, 缪灵, 江建军 2013 物理学报 62 063601]

    [18]

    Zhu X, Yan W, Mortensen N A, Xiao S 2013 Opt. Express 21 3486

    [19]

    Gómez-Díaz J, Perruisseau-Carrier J 2013 Opt. Express 21 15490

    [20]

    Li H, Wang L, Huang Z, Sun B, Zhai X, Li X 2013 Europhys. Lett. 104 37001

    [21]

    Wang B, Zhang X, Yuan X, Teng J 2012 Appl. Phys. Lett. 100 131111

    [22]

    Li H J, Wang L L, Liu J Q, Huang Z R, Sun B, Zhai X 2013 Appl. Phys. Lett. 103 211104

    [23]

    Wang J, Lu W B, Li X B, Ni Z H, Qiu T 2014 J. Phys. D: Appl. Phys. 47 135106

    [24]

    Li H J, Wang L L, Zhang H, Huang Z R, Sun B, Zhai X, Wen S C 2014 Appl. Phys. Express 7 024301

    [25]

    Hu J, Lu W, Wang J 2014 Europhys. Lett. 106 48002

    [26]

    Zhang L, Yang J, Fu X, Zhang M 2013 Appl. Phys. Lett. 103 163114

    [27]

    Sheng S W, Li K, Kong F M, Zhuang H W 2015 Opt. Commun. 336 189

    [28]

    Li H J, Wang L L, Huang Z R, Sun B, Zhai X 2014 Plasmonics 9 6

    [29]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [30]

    Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F 2008 Phys. Rev. Lett. 101 196405

    [31]

    Nikitin A Y, Guinea F, García-Vidal L, Martín-Moreno F J 2011 Phys. Rev. B 84 161407

    [32]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [33]

    Vakil A, Engheta N 2011 Science 332 1291

    [34]

    Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan P M, Kono J, Xu Q 2013 Nano Lett. 13 3698

    [35]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

    [36]

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302 (in Chinese) [康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强 2012 物理学报 61 037302]

    [37]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [38]

    Lin X S, Huang X G 2009 J. Opt. Soc. Am. B 26 1263

  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [3]

    Lao J, Tao J, Wang Q J, Huang X G 2014 Laser Photon. Rev. 8 569

    [4]

    Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101 (in Chinese) [周丽, 魏源, 黄志祥, 吴先良 2015 物理学报 64 018101]

    [5]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]

    [6]

    Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015203

    [7]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803]

    [8]

    Liu Y Q, Zhang Y P, Zhang H Y, L H H, Li T T, Ren G J 2014 Acta Phys. Sin. 63 075201 (in Chinese) [刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军 2014 物理学报 63 075201]

    [9]

    Lu H, Liu X, Mao D, Wang L, Gong Y 2010 Opt. Express 18 17922

    [10]

    Wang B, Wang G P 2006 Appl. Phys. Lett. 89 133106

    [11]

    Wang G, Lu H, Liu X, Mao D, Duan L 2011 Opt. Express 19 3513

    [12]

    Tao J, Huang X G, Lin X S, Chen J H, Zhang Q, Jin X P 2010 J. Opt. Soc. Am. B 27 323

    [13]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [14]

    Arigong B, Shao J, Ren H, Zheng G, Lutkenhaus J, Kim H, Lin Y, Zhang H 2012 Opt. Express 20 13789

    [15]

    He S, Zhang X, He Y 2013 Opt. Express 21 30664

    [16]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens Frank H L, Javier García de Abajo F 2011 ACS Nano 6 431

    [17]

    Liu Y, Yao J, Chen C, Miao L, Jiang J J 2013 Acta Phys. Sin. 62 063601 (in Chinese) [刘源, 姚洁, 陈驰, 缪灵, 江建军 2013 物理学报 62 063601]

    [18]

    Zhu X, Yan W, Mortensen N A, Xiao S 2013 Opt. Express 21 3486

    [19]

    Gómez-Díaz J, Perruisseau-Carrier J 2013 Opt. Express 21 15490

    [20]

    Li H, Wang L, Huang Z, Sun B, Zhai X, Li X 2013 Europhys. Lett. 104 37001

    [21]

    Wang B, Zhang X, Yuan X, Teng J 2012 Appl. Phys. Lett. 100 131111

    [22]

    Li H J, Wang L L, Liu J Q, Huang Z R, Sun B, Zhai X 2013 Appl. Phys. Lett. 103 211104

    [23]

    Wang J, Lu W B, Li X B, Ni Z H, Qiu T 2014 J. Phys. D: Appl. Phys. 47 135106

    [24]

    Li H J, Wang L L, Zhang H, Huang Z R, Sun B, Zhai X, Wen S C 2014 Appl. Phys. Express 7 024301

    [25]

    Hu J, Lu W, Wang J 2014 Europhys. Lett. 106 48002

    [26]

    Zhang L, Yang J, Fu X, Zhang M 2013 Appl. Phys. Lett. 103 163114

    [27]

    Sheng S W, Li K, Kong F M, Zhuang H W 2015 Opt. Commun. 336 189

    [28]

    Li H J, Wang L L, Huang Z R, Sun B, Zhai X 2014 Plasmonics 9 6

    [29]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [30]

    Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F 2008 Phys. Rev. Lett. 101 196405

    [31]

    Nikitin A Y, Guinea F, García-Vidal L, Martín-Moreno F J 2011 Phys. Rev. B 84 161407

    [32]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [33]

    Vakil A, Engheta N 2011 Science 332 1291

    [34]

    Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan P M, Kono J, Xu Q 2013 Nano Lett. 13 3698

    [35]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

    [36]

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302 (in Chinese) [康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强 2012 物理学报 61 037302]

    [37]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [38]

    Lin X S, Huang X G 2009 J. Opt. Soc. Am. B 26 1263

  • [1] Wang Wei-Hua. Study of magnetoplasmons in graphene rings with two-dimensional finite element method. Acta Physica Sinica, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [3] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [4] Liu Liang, Han De-Zhuan, Shi Lei. Plasmonic band structures and its applications. Acta Physica Sinica, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [5] Cheng Xin, Xue Wen-Rui, Wei Zhuang-Zhi, Dong Hui-Ying, Li Chang-Yong. Mode characteristic analysis of optical waveguides based on graphene-coated elliptical dielectric nanowire. Acta Physica Sinica, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [6] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] Chen Ying, Xie Jin-Chao, Zhou Xin-De, Zhang Can, Yang Hui, Li Shao-Hua. Semi-closed T-shaped-disk waveguide filter based on surface-plasmon-induced transparency. Acta Physica Sinica, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [8] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [9] Li Dan, Liang Jun-Wu, Liu Hua-Wei, Zhang Xue-Hong, Wan Qiang, Zhang Qing-Lin, Pan An-Lian. Asymmetric waveguide and the dual-wavelength stimulated emission for CdS/CdS0.48Se0.52 axial nanowire heterostructures. Acta Physica Sinica, 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [10] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [11] Zhang Chao-Jie, Zhou Ting, Du Xin-Peng, Wang Tong-Biao, Liu Nian-Hua. Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons. Acta Physica Sinica, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [12] Yang Yun-Ru, Guan Jian-Fei. Numerical study of plasmonic filter based on metal-insulator-metal waveguide. Acta Physica Sinica, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [13] Qiao Wen-Tao, Gong Jian, Zhang Li-Wei, Wang Qin, Wang Guo-Dong, Lian Shu-Peng, Chen Peng-Hui, Meng Wei-Wei. Propagation properties of the graphene surface plasmon in comb-like waveguide. Acta Physica Sinica, 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [14] Tian He, Sun Wei-Min, Zhang Yun-Dong. Phase sensitivity of rotation sensing in coupled resonator waveguides. Acta Physica Sinica, 2013, 62(19): 194204. doi: 10.7498/aps.62.194204
    [15] Wang Wu-Song, Zhang Li-Wei, Ran Jia, Zhang Ye-Wen. Experimental studies of the surface plasmon polaritons waveguide filter in microwave band. Acta Physica Sinica, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [16] Zhang Zhi-Dong, Zhao Ya-Nan, Lu Dong, Xiong Zu-Hong, Zhang Zhong-Yue. Numerical investigation of the metal-insulator-metal waveguide filter based on the arc-shaped resonator. Acta Physica Sinica, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [17] Jia Zhi-Xin, Duan Xin, Lü Ting-Ting, Guo Ya-Nan, Xue Wen-Rui. Propagation properties of a surface plasmonicwaveguide with a bowtie air cores. Acta Physica Sinica, 2011, 60(5): 057301. doi: 10.7498/aps.60.057301
    [18] Hao Jun, Li Hong-Gen, Cao Zhuang-Qi, Chen Fan. Double-channel narrowband filter based on Goos-Hänchen shift. Acta Physica Sinica, 2011, 60(7): 074223. doi: 10.7498/aps.60.074223
    [19] Guo Ya-Nan, Xue Wen-Rui, Zhang Wen-Mei. Propagation properties of a surface plasmonic waveguide with double elliptical metallic nanorods. Acta Physica Sinica, 2009, 58(6): 4168-4174. doi: 10.7498/aps.58.4168
    [20] Chen Jian-Jun, Li Zhi, Zhang Jia-Sen, Gong Qi-Huang. Surface plasmon polariton modulator based on electro-optic polymer. Acta Physica Sinica, 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
Metrics
  • Abstract views:  6416
  • PDF Downloads:  907
  • Cited By: 0
Publishing process
  • Received Date:  03 October 2014
  • Accepted Date:  16 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回