Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on sensing characteristics of I-shaped terahertz metamaterial absorber

Zhang Yu-Ping Li Tong-Tong Lü Huan-Huan Huang Xiao-Yan Zhang Hui-Yun

Citation:

Study on sensing characteristics of I-shaped terahertz metamaterial absorber

Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, metamaterials have attracted considerable attention because of their unique properties and capability of being used in many areas of science. Among these applications, metamaterial absorber is the one researchers show much interests. On the basis of its electromagnetic responses to other material parameters, the metamaterial absorber can be applied to sensing. In this paper, a metamaterial absorber with an I-shaped unit cell is proposed and its favorable sensing characteristics in terahertz frequency range are numerically simulated in terms of frequency-domain algorithm. Influences of the thickness of the sample to be tested and the thickness of dielectric spacer of the sensing of metamaterial absorber on the frequency sensitivity, amplitude sensitivity, and the figure of merit of the refractive index, are studied in detail. Research results indicate that as the refractive index of the sample, whose thickness being fixed, increases, the resonant frequency red-shifts and the reflected amplitude increases. And when the thickness of the sample with a particular refractive index increases, the resonant frequency red-shifts and the reflected amplitude increases correspondingly. The above researches indicate that the sensing of thickness or refractive index of the sample to be tested (abbreviated as specimen) can be realized in a metamaterial absorber. The frequency sensitivity of the refractive index can reach 153.17 GHz/RIU and the amplitude sensitivity of the refractive index can reach 41.37%/RIU when the thickness of the sample is fixed at 40 μm. The frequency sensitivity of the refractive index increases as the thickness of the sample tested increases, but the increasing range gradually decreases. In addition, the amplitude sensitivity of the refractive index increases linearly with the increase of thickness of the sample tested. The frequency sensitivity of thickness decreases linearly with the increase of the thickness of the sample to be tested which is of a particular refractive index. As the thickness of dielectric spacer increases, the frequency sensitivity of the refractive index increases until the thickness reaches 30 μm. Besides, when the refractive index takes a particular value, the frequency sensitivity of thickness decreases linearly as the thickness of dielectric spacer increases. Along with the gradual increase of the thickness of the sample tested, RFOM increases but the increasing range decreases. And TFOM gradually decreases as the thickness of sample tested increases. Both the RFOM and TFOM decrease with the increase of the thickness of dielectric spacer. In the end, the sensing mechanism of metamaterial absorber is discussed in detail. The reflectance spectra and the sensitivity can be adjusted with changing the refractive index and thickeness of the sample tested and the thickness of dielectric spacer, and this will provide important instructive means for terahertz sensing with metamaterial absorbers.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61001018), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FM011), the Shandong Province Higher Educational Science and Technology Program (Grant No. J11LG20), the Qingdao city innovative leading talent plan of China (Grant No. 13-CX-25), the CAEP THz Science and Technology Foundation, China (Grant No. 201401), Qingdao Economic & Technical Development Zone Science & Technology Project, China (Grant No. 2013-1-64), and the Shandong University of Science and Technology Foundation, China (Grant No. YC140108).
    [1]

    Taday P F 2004 Philos. Trans. R. Soc. London, Ser. A 362 351

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146

    [3]

    Siegel P H 2004 Microwave Symposium Digest, 2004 IEEE MTT-S International (Fort Worth:IEEE) p1575

    [4]

    Pickwell E, Wallace V P 2006 J. Phys. D:Appl. Phys. 39 R301

    [5]

    Siegel P H 2002 IEEE T. Microw Theory 50 910

    [6]

    Schmuttenmaer C A 2004 Chem. Rev. 104 1759

    [7]

    Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401

    [8]

    Veselago V G 1968 Phys. Usp. 10 509

    [9]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [10]

    Lal S, Link S, Halas N J 2007 Nature Photon 1 641

    [11]

    Zhu J, Eleftheriades G V 2009 IEEE Antenn. Wirel. PR 8 295

    [12]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [13]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nature Photon 3 148

    [14]

    Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R 2007 Appl. Phys. Lett. 91 062511

    [15]

    O’Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786

    [16]

    Lahiri B, Khokhar A Z, De La Rue R M, McMeekin S G, Johnson N P 2009 Opt. Express 17 1107

    [17]

    Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113

    [18]

    Tao H, Strikwerda A C, Liu M, Mondia J P, Ekmekci E, Fan K, Omenetto F G 2010 Appl. Phys. Lett. 97 261909

    [19]

    Withayachumnankul W, Lin H, Serita K, Shah C M, Sriram S, Bhaskaran M, Abbott D 2012 Opt. Express 20 3345

    [20]

    Cheng Y Z, Xiao T, Yang H L, Xiao B X 2010 Acta Phys. Sin. 59 5715 (in Chinese) [程用志, 肖婷, 杨河林, 肖柏勋 2010 物理学报 59 5715]

    [21]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 物理学报 62 013701]

    [22]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R 2011 Opt. Lett. 36 3476

    [23]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Averitt R D 2010 J. Phys. D:Appl. Phys. 43 225102

    [24]

    Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [25]

    Zou T B, Hu F R, Xiao J, Zhang L H, Liu F, Chen T, Niu J H, Xiong X M 2014 Acta Phys. Sin. 63 178103 (in Chinese) [邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名 2014 物理学报 63 178103]

    [26]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [27]

    Xu Z, Gu C, Pei Z B, Liu J, Qu S B, Gu W 2011 Chin. Phys. B 20 017801

    [28]

    Cheng Y Z, Nie Y, Gong R Z 2013 OPT LASER TECHNOL 48 415

    [29]

    Cong L, Singh R 2014 arXiv:1408.3711v1 [physics. optics]

    [30]

    Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W 2014 Appl. Phys. Lett. 105 171101

  • [1]

    Taday P F 2004 Philos. Trans. R. Soc. London, Ser. A 362 351

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146

    [3]

    Siegel P H 2004 Microwave Symposium Digest, 2004 IEEE MTT-S International (Fort Worth:IEEE) p1575

    [4]

    Pickwell E, Wallace V P 2006 J. Phys. D:Appl. Phys. 39 R301

    [5]

    Siegel P H 2002 IEEE T. Microw Theory 50 910

    [6]

    Schmuttenmaer C A 2004 Chem. Rev. 104 1759

    [7]

    Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401

    [8]

    Veselago V G 1968 Phys. Usp. 10 509

    [9]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [10]

    Lal S, Link S, Halas N J 2007 Nature Photon 1 641

    [11]

    Zhu J, Eleftheriades G V 2009 IEEE Antenn. Wirel. PR 8 295

    [12]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [13]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nature Photon 3 148

    [14]

    Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R 2007 Appl. Phys. Lett. 91 062511

    [15]

    O’Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786

    [16]

    Lahiri B, Khokhar A Z, De La Rue R M, McMeekin S G, Johnson N P 2009 Opt. Express 17 1107

    [17]

    Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113

    [18]

    Tao H, Strikwerda A C, Liu M, Mondia J P, Ekmekci E, Fan K, Omenetto F G 2010 Appl. Phys. Lett. 97 261909

    [19]

    Withayachumnankul W, Lin H, Serita K, Shah C M, Sriram S, Bhaskaran M, Abbott D 2012 Opt. Express 20 3345

    [20]

    Cheng Y Z, Xiao T, Yang H L, Xiao B X 2010 Acta Phys. Sin. 59 5715 (in Chinese) [程用志, 肖婷, 杨河林, 肖柏勋 2010 物理学报 59 5715]

    [21]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 物理学报 62 013701]

    [22]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R 2011 Opt. Lett. 36 3476

    [23]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Averitt R D 2010 J. Phys. D:Appl. Phys. 43 225102

    [24]

    Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [25]

    Zou T B, Hu F R, Xiao J, Zhang L H, Liu F, Chen T, Niu J H, Xiong X M 2014 Acta Phys. Sin. 63 178103 (in Chinese) [邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名 2014 物理学报 63 178103]

    [26]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [27]

    Xu Z, Gu C, Pei Z B, Liu J, Qu S B, Gu W 2011 Chin. Phys. B 20 017801

    [28]

    Cheng Y Z, Nie Y, Gong R Z 2013 OPT LASER TECHNOL 48 415

    [29]

    Cong L, Singh R 2014 arXiv:1408.3711v1 [physics. optics]

    [30]

    Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W 2014 Appl. Phys. Lett. 105 171101

  • [1] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] Xiang Xing-Cheng, Ma Hai-Bei, Wang Lei, Tian Da, Zhang Wei, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Ultramicro-sensing of terahertz metamaterials implemented by using sample traps. Acta Physica Sinica, 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [3] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [4] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [5] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [6] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [7] Wang Xin, Wang Jun-Lin. Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band. Acta Physica Sinica, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [8] Wang Yue, Cui Zi-Jian, Zhang Xiao-Ju, Zhang Da-Chi, Zhang Xiang, Zhou Tao, Wang Xuan. Research progress of metamaterials powered advanced terahertz biochemical sensing detection techniques. Acta Physica Sinica, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [9] Wang Chao-Hui, Li Yong-Xiang, Zhu Shuai. Absorbers with spin-selection based on metasurface. Acta Physica Sinica, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [10] Yan Hao-Lan, Cheng Ya-Qing, Wang Kai-Li, Wang Ya-Xin, Chen Yang-Wei, Yuan Qiu-Lin, Ma Heng. Terahertz wave absorption for alkylcyclohexyl-isothiocyanatobenzene liquid crystal materials. Acta Physica Sinica, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [11] Chen Jun, Yang Mao-Sheng, Li Ya-Di, Cheng Deng-Ke, Guo Geng-Liang, Jiang Lin, Zhang Hai-Ting, Song Xiao-Xian, Ye Yun-Xia, Ren Yun-Peng, Ren Xu-Dong, Zhang Ya-Ting, Yao Jian-Quan. Tunable terahertz wave broadband absorber based on metamaterial. Acta Physica Sinica, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [12] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [13] Guo Chang, Zhang Yan. Super diffraction imaging with wave vector selective metasurface. Acta Physica Sinica, 2017, 66(14): 147804. doi: 10.7498/aps.66.147804
    [14] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [15] Zhou Zhuo-Hui, Liu Xiao-Lai, Huang Da-Qing, Kang Fei-Yu. Design and preparation of a low frequency absorber based on hollowed-out cross-shaped meta-material structure. Acta Physica Sinica, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [16] Zou Tao-Bo, Hu Fang-Rong, Xiao Jing, Zhang Long-Hui, Liu Fang, Chen Tao, Niu Jun-Hao, Xiong Xian-Ming. Design of a polarization-insensitive and broadband terahertz absorber using metamaterials. Acta Physica Sinica, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [17] Lu Lei, Qu Shao-Bo, Shi Hong-Yu, Zhang An-Xue, Zhang Jie-Que, Ma Hua. A miniaturized low-frequency polarization-insensitive metamaterial absorber based on broadside-coupled spiral structures. Acta Physica Sinica, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [18] Liu Tao, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Li Wen-Qiang. Design of metamaterial absorber and its applications for waveguide slot antenna. Acta Physica Sinica, 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [19] Sun Liang-Kui, Cheng Hai-Feng, Zhou Yong-Jiang, Wang Jun, Pang Yong-Qiang. Design and preparation of a radar-absorbing material based on metamaterial. Acta Physica Sinica, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [20] Zhao Dong-Mei, Shi Yu-Lei, Zhou Qing-Li, Li Lei, Sun Hui-Juan, Zhang Cun-Lin. Direct fabrication of terahertz dual-band resonator. Acta Physica Sinica, 2011, 60(9): 093301. doi: 10.7498/aps.60.093301
Metrics
  • Abstract views:  5312
  • PDF Downloads:  427
  • Cited By: 0
Publishing process
  • Received Date:  03 December 2014
  • Accepted Date:  07 January 2015
  • Published Online:  05 June 2015

/

返回文章
返回