Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The ability of porous brittle materials to absorb and withstand high energy density pulse

Yu Yin He Hong-Liang Wang Wen-Qiang Lu Tie-Cheng

Citation:

The ability of porous brittle materials to absorb and withstand high energy density pulse

Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The high energy density pulse input into brittle structural materials will propagate as a shock wave. It induces compression fracture and function failure. In this work, voids are introduced to significantly enhance the shock plastic deformability of brittle structural materials, so that brittle structural materials can effectively absorb the shock wave energy, and restrain the propagation of shock-induced cracks. A lattice-spring model is established to investigate the mechanism of shock plastic, and the processes of energy absorbing and crack expanding in porous brittle materials. The shock wave inside porous brittle material splits into an elastic wave and a deformation wave. The deformation wave is similar to the plastic wave in ductile metal, however, its deformation mechanism is of volume shrinkage induced by voids collapse, and slippage and rotation deformation of scattered tiny scraps comminuted by shear cracks. We calculate the shock wave energy based on particle velocities and longitudinal stresses on nine interfaces of the modeled brittle sample, and further obtain the absorbed energy density. The absorbed energy density curve is composed of two stages: the absorbing stage and the saturation stage. The absorbing stage corresponds to the deformation wave, and the saturation stage corresponds to the shock equilibrium state (Hugoniot state). The energy absorb abilities of the dense sample and porous samples with 5% and 10% porosities are compared based on calculation results. It shows that the ability of the porous brittle material to absorb high energy density pulse is much higher than that of the dense brittle material. The ability of porous brittle materials to restrain the propagation of the shock fracture is also explored. The goal of this design is to freeze the propagation of the shock fracture in the middle of the brittle sample, so that the other parts of the sample keep nearly intact during the shock. Inside the protected area, the designed functions of brittle materials can be accomplished without the disturbance of the shock fracture. This design is used under the short pulse loading condition: the rarefaction wave on the rear of the short pulse will catch up and unload the deformation wave if it moves slowly; the deformation wave and the shock fracture propagate synchronously; when the deformation wave is unloaded, the shock fracture will be frozen in the middle of the porous sample. Under the short pulse loading condition, compared with the dense brittle material, whose entire regions are destructed, the porous brittle material can restrain the propagation and impenetration of the shock fracture, with the cost of increasing the damage extent in part of the sample. This is helpful to avoid the entirely function failure of the brittle structural material.
    • Funds: Project supported by the Special Scientific Research Program for Key Laboratory of China Academy of Engineering Physics (Grant No. 2012-zhuan-03), the Foundation of National Key Laboratory of Shock Wave and Detonation Physics, China (Grant Nos. 9140C670301120C67248, 9140C670302140C67284), and the National Natural Science Foundation of China (Grant No. 11272164).
    [1]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 物理学报 63 185202]

    [2]

    Wang F C 2013 Chin. Phys. B 22 124102

    [3]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202

    [4]

    Song Y F, Yu G Y, Jiang L L, Zheng X X, Liu Y Q, Yang Y Q 2011 J. Appl. Phys. 109 073103

    [5]

    Couturier S, de Rességuier T, Hallouin M, Romain J P, Bauer F 1996 J. Appl. Phys. 79 9338

    [6]

    Kawai N, Tsurui K, Hasegawa S, Sato E 2010 Rev. Sci. Instrum. 81 115105

    [7]

    de Rességuier T, Kurakevych O O, Chabot A, Petitet J P, Solozhenko V L 2010 J. Appl. Phys. 108 083522

    [8]

    Lee B T, Sarkar S K 2009 Scr. Mater. 61 686

    [9]

    Chen L Y, Fu Z D, Zhang G Q, Hao X P, Jiang Q K, Wang X D, Cao Q P, Franz H, Liu Y G, Xie H S, Zhang S L, Wang B Y, Zeng Y W, Jiang J Z 2008 Phys. Rev. Lett. 100 075501

    [10]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [11]

    Grady D E 1998 Mech. Mater. 29 181

    [12]

    Bourne N K, Millett J, Rosenberg Z, Murray N 1998 J. Mech. Phys. Solids 46 1887

    [13]

    Lankford J, Predebon W W, Staehler J M, Subhash G, Pletka B J 1998 Mech. Mater. 29 205

    [14]

    Sarac B, Schroers J 2013 Nat. Commun. 4 2158

    [15]

    Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365

    [16]

    Abdeljawad F, Fontus M, Haataja M 2011 Appl. Phys. Lett. 98 031909

    [17]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [18]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501

    [19]

    Mirkhalaf M, Dastjerdi A K, Barthelat F 2014 Nat. Commun. 5 3166

    [20]

    Yahyazadehfar M, Bajaj D, Arola D D 2013 Acta Biomater. 9 4806

    [21]

    Barthelat F, Tang H, Zavattieri P D, Li C M, Espinosa H D 2007 J. Mech. Phys. Solids 55 306

    [22]

    Wang R Z, Suo Z, Evans A G, Yao N, Aksay I A 2001 J. Mater. Res. 16 2485

    [23]

    Launey M E, Ritchie R O 2009 Adv. Mater. 21 2103

    [24]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [25]

    Zeng T, Dong X L, Mao C L, Zhou Z Y, Yang H 2007 J. Eur. Ceram. Soc. 27 2025

    [26]

    Lian Y P, Zhang X, Liu Y 2012 Theor. Appl. Mech. Lett. 2 021003

    [27]

    Buxton G A, Care C M, Cleaver D J 2001 Modelling Simul. Mater. Sci. Eng. 9 485

    [28]

    Pazdniakou A, Adler P 2012 Transp. Porous. Med. 93 243

    [29]

    Chen Z, Han Y L, Jiang S, Gan Y, Sewell T D 2012 Theor. Appl. Mech. Lett. 2 051003

    [30]

    Ghajari M, Iannucci L, Curtis P 2014 Comput. Methods Appl. Mech. Engrg. 276 431

    [31]

    Huang D, Zhang Q, Qiao P Z 2011 Sci. China Tech. Sci. 54 591

    [32]

    Buxton G A, Balazs A C 2002 J. Chem. Phys. 117 7649

    [33]

    Ashurst W T, Hoover W G 1976 Phys. Rev. B 14 1465

    [34]

    Hrennikoff A 1941 J. Appl. Mech. 8 A169

    [35]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [36]

    Zhao G, Fang J, Zhao J 2011 Int. J. Numer. Anal. Meth. Geomech. 35 859

    [37]

    Ostoja-Starzewski M 2002 Appl. Mech. Rev. 55 35

    [38]

    Wang Y, Yin X C, Ke F J, Xia M F, Peng K Y 2000 Pure Appl. Geophys. 157 1905

    [39]

    Yano K, Horie Y 1999 Phys. Rev. B 59 13672

    [40]

    Grah M, Alzebdeh K, Sheng P Y, Vaudin M D, Bowman K J, Ostoja-Starzewski M 1996 Acta Mater. 44 4003

    [41]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309

    [42]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [43]

    Ashby M F, Hallam S D 1986 Acta Metall. 34 497

    [44]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nat. Mater. 5 614

    [45]

    Yu Y, He H L, Wang W Q, Lu T C 2014 Acta Phys. Sin. 63 246102 (in Chinese) [喻寅, 贺红亮, 王文强, 卢铁城 2014 物理学报 63 246102]

    [46]

    Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103 (in Chinese) [喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮 2012 物理学报 61 048103]

    [47]

    Subhash G, Liu Q, Gao X L 2006 Int. J. Impact. Eng. 32 1113

    [48]

    Li Q M, Reid S R 2006 Int. J. Impact. Eng. 32 1898

    [49]

    Yamada Y, Shimojima K, Sakaguchi Y, Mabuchi M, Nakamura M, Asahina T, Mukai T, Kanahashi H, Higashi K 1999 J. Mater. Sci. Lett. 18 1477

  • [1]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 物理学报 63 185202]

    [2]

    Wang F C 2013 Chin. Phys. B 22 124102

    [3]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202

    [4]

    Song Y F, Yu G Y, Jiang L L, Zheng X X, Liu Y Q, Yang Y Q 2011 J. Appl. Phys. 109 073103

    [5]

    Couturier S, de Rességuier T, Hallouin M, Romain J P, Bauer F 1996 J. Appl. Phys. 79 9338

    [6]

    Kawai N, Tsurui K, Hasegawa S, Sato E 2010 Rev. Sci. Instrum. 81 115105

    [7]

    de Rességuier T, Kurakevych O O, Chabot A, Petitet J P, Solozhenko V L 2010 J. Appl. Phys. 108 083522

    [8]

    Lee B T, Sarkar S K 2009 Scr. Mater. 61 686

    [9]

    Chen L Y, Fu Z D, Zhang G Q, Hao X P, Jiang Q K, Wang X D, Cao Q P, Franz H, Liu Y G, Xie H S, Zhang S L, Wang B Y, Zeng Y W, Jiang J Z 2008 Phys. Rev. Lett. 100 075501

    [10]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [11]

    Grady D E 1998 Mech. Mater. 29 181

    [12]

    Bourne N K, Millett J, Rosenberg Z, Murray N 1998 J. Mech. Phys. Solids 46 1887

    [13]

    Lankford J, Predebon W W, Staehler J M, Subhash G, Pletka B J 1998 Mech. Mater. 29 205

    [14]

    Sarac B, Schroers J 2013 Nat. Commun. 4 2158

    [15]

    Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365

    [16]

    Abdeljawad F, Fontus M, Haataja M 2011 Appl. Phys. Lett. 98 031909

    [17]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [18]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501

    [19]

    Mirkhalaf M, Dastjerdi A K, Barthelat F 2014 Nat. Commun. 5 3166

    [20]

    Yahyazadehfar M, Bajaj D, Arola D D 2013 Acta Biomater. 9 4806

    [21]

    Barthelat F, Tang H, Zavattieri P D, Li C M, Espinosa H D 2007 J. Mech. Phys. Solids 55 306

    [22]

    Wang R Z, Suo Z, Evans A G, Yao N, Aksay I A 2001 J. Mater. Res. 16 2485

    [23]

    Launey M E, Ritchie R O 2009 Adv. Mater. 21 2103

    [24]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [25]

    Zeng T, Dong X L, Mao C L, Zhou Z Y, Yang H 2007 J. Eur. Ceram. Soc. 27 2025

    [26]

    Lian Y P, Zhang X, Liu Y 2012 Theor. Appl. Mech. Lett. 2 021003

    [27]

    Buxton G A, Care C M, Cleaver D J 2001 Modelling Simul. Mater. Sci. Eng. 9 485

    [28]

    Pazdniakou A, Adler P 2012 Transp. Porous. Med. 93 243

    [29]

    Chen Z, Han Y L, Jiang S, Gan Y, Sewell T D 2012 Theor. Appl. Mech. Lett. 2 051003

    [30]

    Ghajari M, Iannucci L, Curtis P 2014 Comput. Methods Appl. Mech. Engrg. 276 431

    [31]

    Huang D, Zhang Q, Qiao P Z 2011 Sci. China Tech. Sci. 54 591

    [32]

    Buxton G A, Balazs A C 2002 J. Chem. Phys. 117 7649

    [33]

    Ashurst W T, Hoover W G 1976 Phys. Rev. B 14 1465

    [34]

    Hrennikoff A 1941 J. Appl. Mech. 8 A169

    [35]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [36]

    Zhao G, Fang J, Zhao J 2011 Int. J. Numer. Anal. Meth. Geomech. 35 859

    [37]

    Ostoja-Starzewski M 2002 Appl. Mech. Rev. 55 35

    [38]

    Wang Y, Yin X C, Ke F J, Xia M F, Peng K Y 2000 Pure Appl. Geophys. 157 1905

    [39]

    Yano K, Horie Y 1999 Phys. Rev. B 59 13672

    [40]

    Grah M, Alzebdeh K, Sheng P Y, Vaudin M D, Bowman K J, Ostoja-Starzewski M 1996 Acta Mater. 44 4003

    [41]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309

    [42]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [43]

    Ashby M F, Hallam S D 1986 Acta Metall. 34 497

    [44]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nat. Mater. 5 614

    [45]

    Yu Y, He H L, Wang W Q, Lu T C 2014 Acta Phys. Sin. 63 246102 (in Chinese) [喻寅, 贺红亮, 王文强, 卢铁城 2014 物理学报 63 246102]

    [46]

    Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103 (in Chinese) [喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮 2012 物理学报 61 048103]

    [47]

    Subhash G, Liu Q, Gao X L 2006 Int. J. Impact. Eng. 32 1113

    [48]

    Li Q M, Reid S R 2006 Int. J. Impact. Eng. 32 1898

    [49]

    Yamada Y, Shimojima K, Sakaguchi Y, Mabuchi M, Nakamura M, Asahina T, Mukai T, Kanahashi H, Higashi K 1999 J. Mater. Sci. Lett. 18 1477

  • [1] Hou Yu-Mei, Chen Wei, Zou Yun-Peng, Yu Li-Ming, Shi Zhong-Bing, Duan Xu-Ru. Beta-induced Alfvén eigenmodes with frequency chirping driven by energetic ions in the HL-2A Tokamak. Acta Physica Sinica, 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [2] Zou Yun-Peng, Chan Vincent, Chen Wei. Improvement of critical gradient model and establishment of an energetic particle module for integrated simulation. Acta Physica Sinica, 2023, 72(21): 215206. doi: 10.7498/aps.72.20230681
    [3] Bao Jian, Zhang Wen-Lu, Li Ding. Global simulations of energetic electron excitation of beta-induced Alfvén eigenmodes. Acta Physica Sinica, 2023, 72(21): 215216. doi: 10.7498/aps.72.20230794
    [4] Preface to the special topic: Energetic particles in magnetic confinement fusion. Acta Physica Sinica, 2023, 72(21): 210101. doi: 10.7498/aps.72.210101
    [5] Wei Guang-Yu, Chen Ning-Fei, Qiu Zhi-Yong. Nonlinear interaction of EGAM with DW turbulence in the Dimits shift region. Acta Physica Sinica, 2022, 71(1): 015201. doi: 10.7498/aps.71.20211430
    [6] Nonlinear interaction of EGAM with DW turbulence in the Dimits shift region. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211430
    [7] Yin Chuan-Lei, Wang Wei-Min, Liao Guo-Qian, Li Meng-Chao, Li Yu-Tong, Zhang Jie. Ultrahigh-energy electron beam generated by ultra-intense circularly polarized laser pulses. Acta Physica Sinica, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [8] Xie Chen, Hu Ming-Lie, Zhang Da-Peng, Chai Lu, Wang Qing-Yue. High energy dissipative soliton mode-locked fiber oscillator based on a multipass cell. Acta Physica Sinica, 2013, 62(5): 054203. doi: 10.7498/aps.62.054203
    [9] Liu Cheng, Wang Zhao-Hua, Shen Zhong-Wei, Zhang Wei, Teng Hao, Wei Zhi-Yi. A long ring regenerative cavity for high energy chirped pulse amplification. Acta Physica Sinica, 2013, 62(9): 094209. doi: 10.7498/aps.62.094209
    [10] Wu Rong, Hua Neng, Zhang Xiao-Bo, Cao Guo-Wei, Zhao Dong-Feng, Zhou Shen-Lei. Large-diameter multi-level diffractive optical elements with high energy efficiency. Acta Physica Sinica, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [11] Yan Ji, Zheng Jian-Hua, Chen Li, Lin Zhi-Wei, Jiang Shao-En. The application of phase contrast imaging to implosion capsule diagnose in high energy density physics environment. Acta Physica Sinica, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [12] Wang Lei-Ran, Liu Xue-Ming, Gong Yong-Kang. Experimental research on high-energy dissipative solitons in an erbium-doped fiber laser. Acta Physica Sinica, 2010, 59(9): 6200-6204. doi: 10.7498/aps.59.6200
    [13] Song You-Jian, Hu Ming-Lie, Liu Bo-Wen, Chai Lu, Wang Qing-Yue. High energy femtosecond soliton mode-locking laser based on Yb-doped single polarization large-mode-area photonic crystal fiber. Acta Physica Sinica, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [14] Lei Ting, Tu Cheng-Hou, Li En-Bang, Li Yong-Nan, Guo Wen-Gang, Wei Dai, Zhu Hui, Lü Fu-Yun. The theoretical study and numerical simulation of self-similar transmission of high energy wave-breaking free ultra-short pulse. Acta Physica Sinica, 2007, 56(5): 2769-2775. doi: 10.7498/aps.56.2769
    [15] Shao Tao, Sun Guang-Sheng, Yan Ping, Gu Chen, Zhang Shi-Chang. Calculation on runaway process of high-energy fast electrons under nanosecond-pulse. Acta Physica Sinica, 2006, 55(11): 5964-5968. doi: 10.7498/aps.55.5964
    [16] Liu Yuan-Fu, Han Jian-Min, Zhang Gu-Ling, Wang Jiu-Li, Chen Guang-Liang, Li Xue-Ming, Feng Wen-Ran, Fan Song-Hua, Liu Chi-Zi, Yang Si-Ze. Study on the microstructure and properties of (Ti, Al)N film deposited by pulsed high energy density plasma. Acta Physica Sinica, 2005, 54(3): 1301-1305. doi: 10.7498/aps.54.1301
    [17] Liu Yuan-Fu, Zhang Gu-Ling, Wang Jiu-Li, Liu Chi-Zi, Yang Si-Ze. Preparation of titanium nitride films by pulsed high-energy-density plasma and investigation of the tribological behavior of the film. Acta Physica Sinica, 2004, 53(2): 503-507. doi: 10.7498/aps.53.503
    [18] Yang Wu-Bao, Fan Song-Hua, Liu Chi-Zi, Zhang Gu-Ling, Wang Jiu-Li, Yang Si-Ze. Investigation of diamond-like-carbon films deposited on glass substrate by using a pulsed high energy density plasma gun. Acta Physica Sinica, 2003, 52(1): 140-144. doi: 10.7498/aps.52.140
    [19] LIU ZHEN-WEI, YANG XIAO-LIANG, XIAO SI-GUO. THE EXPERIMENTAL STUDY OF IMPROVING RARE-EARTHDOPED MATERIALS'S ENERGY UP-CONVERSIONEFFICIENCY. Acta Physica Sinica, 2001, 50(9): 1795-1779. doi: 10.7498/aps.50.1795
    [20] HAN FU-SHENG, ZHU ZHEN-GANG, LIU CHANG-SONG. COMPRESSIVE DEFORMATION AND ENERGY ABSORBING CHARACTERISTICS OF FOAMED ALUMINUM. Acta Physica Sinica, 1998, 47(3): 520-528. doi: 10.7498/aps.47.520
Metrics
  • Abstract views:  5238
  • PDF Downloads:  661
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2014
  • Accepted Date:  16 December 2014
  • Published Online:  05 June 2015

/

返回文章
返回