Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influences of shear deformation on electronic structure and optical properties of B, N doped carbon nanotube superlattices

Jiang Yan Liu Gui-Li

Citation:

Influences of shear deformation on electronic structure and optical properties of B, N doped carbon nanotube superlattices

Jiang Yan, Liu Gui-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Carbon nanotubes, one of the most advanced nanoscale materials, have attracted much research attention since they exhibited semiconductor, metal or insulator properties depending on their geometric structures. Carbon nanotubes have great potential in various applications in electronic and optical device. Dopants to the carbon nanotubes intentionally could offer a possible route to change and tune their electronic, optical properties. Another important and effective method is to deform the carbon nanotubes structure. Superlattice structures can offer extra degrees of freedom in designing electronic, optical devices. To understand the involved mechanism, in this paper, the geometry structures, electronic structures and optical properties of the armchair carbon nanotube superlattices doped cyclic alternately with B and N under different shear deformations are investigated by the first-principles method through using the CASTEP code in MS 6.0. It is found that the structures of carbon nanotube superlattices can be dramatically changed by shear deformation. When the shear deformation is less than 9%, the optimization geometry structures of carbon nanotube superlattices are still similar to tubular structures, when the shear deformation is greater than 12%, the geometry structures of these systems have large distortions. The results about the binding energy show that the shear deformation changes the stability of the armchair doped carbon nanotube superlattice. The larger the shear deformation, the lower the stability of the doped carbon nanotube superlattices is. The analysis of charge population show that the covalent bond and ionic bond coexist in the armchair carbon nanotube superlattices doped cyclically alternately with B and N. The band gap of the carbon nanotube superlattice is affected by N, B dopants, as a result, the carbon nanotube superlattice changes from a metal to a semiconductor. Compared with the (5, 5) nanotube superlattices, the band gaps of the (7, 7), (9, 9) doped carbon nanotube superlattices increase. With increasing the shear deformation, the band gap of the doped carbon nanotube superlattices decreases gradually, when the shear deformation is greater than 12%, the band gap changes into 0 eV, the carbon nanotube superlattice changes back into a metal from a semiconductor. The analysis of density of states obtains the same conclusions as the energy band analysis. In optical properties, compared with the armchair carbon nanotube superlattices doped cyclically alternately with B and N without shear deformation, those systems under shear deformation have the peaks of the absorption coefficient and the reflectivity that are all reduced, and are all red-shifted.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51371049) and the Natural Science Foundation of Liaoning Province, China (Grant No. 20102173).
    [1]

    Wei Y, Hu H F, Wang Z Y, Cheng C P, Chen N T, Xie N 2011 Acta Phys. Sin. 60 027307 (in Chinese) [魏燕, 胡慧芳, 王志勇, 程彩萍, 陈南庭, 谢能 2011 物理学报 60 027307]

    [2]

    Jin L, Fu H G, Xie Y, Yu H T 2012 Chin. Phys. B 21 057901

    [3]

    Kalbac M, Kavan L, Dunsch L, Dresselhaus M S 2008 Nano Lett. 8 1257

    [4]

    Yin L C, Saito R, Dresselhaus M S 2010 Nano Lett. 10 3290

    [5]

    Taheri S, Shadman M, Soltanabadi A, Ahadi Z 2014 Int. Nano Lett. 4 81

    [6]

    Nawazish A K, Sadaf A 2012 J. Alloys Compd. 538 183

    [7]

    Zhang L, Cao X W, Feng M, Wang Y F 2008 J. Light Scatt. 20 295 (in Chinese) [张磊, 曹学伟, 冯敏, 王玉芳 2008 光散射学报 20 295]

    [8]

    Li R, Sun D H 2014 Acta Phys. Sin. 63 056101 (in Chinese) [李瑞, 孙丹海 2014 物理学报 63 056101]

    [9]

    Wu H L, Qiu J S, Hao C, Tang Z A 2006 J. Dalian Univ. Tech. 46 328 (in Chinese) [吴红丽, 邱介山, 郝策, 唐祯安 2006 大连理工大学学报 46 328]

    [10]

    Zhang H, Chen X H, Zhang Z H, Qiu M 2006 Acta Phys. Chim. Sin. 22 1101 (in Chinese) [张华, 陈小华, 张振华, 邱明 2006 物理化学学报 22 1101]

    [11]

    Yuan J H, Cheng Y M 2007 Acta Phys. Chim. Sin. 23 889 (in Chinese) [袁剑辉, 程玉民 2007 物理化学学报 23 889]

    [12]

    Zhang L J, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 527 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤 2010 物理学报 59 527]

    [13]

    Niu W X, Zhang H, Gong M, Cheng X L 2013 Chin. Phys. B 22 066802

    [14]

    Barghi S H, Tsotsis T T, Sahimi M 2014 Int. J. Hydrogen Energy 39 21107

    [15]

    Zheng Q S, Xu Z P, Wang L F 2004 Adv. Mech. 34 97 (in Chinese) [郑泉水, 徐志平, 王立峰 2004 力学进展 34 97]

    [16]

    Sagara T, Kurumi S, Suzuki K 2014 Appl. Surf. Sci. 292 39

    [17]

    Cui S W, Zhu R Z, Wang X S, Yang H X 2014 Chin. Phys. B 23 106105

    [18]

    Shamsudin M S, Mohammad M, Zobir S A M, Asli N A, Bakar S A, Abdullah S, Yahya S Y S, Mahmood M R 2013 J. Nanostruct. Chem. 3 13

    [19]

    Cheng C P, Chen G H, Li W H, Luo C L 2012 J. Nanjing Norm. Univ. ( Natural Science Edition) 35 30 (in Chinese) [程承平, 陈贵虎, 李伟红, 罗成林 2012 南京师大学报(自然科学版) 35 30]

    [20]

    Wu Y D, Zhang X C, Zhong W F, Liang Y D 2006 J. Huazhong Univ. Sci. Tech. (Nature Science Edition) 34 110 (in Chinese) [吴永东, 张小春, 钟伟芳, 梁以德 2006 华中科技大学学报(自然科学版) 34 110]

    [21]

    Ghavamian A, Rahmandoust M, Öchsner A 2013 Composites Part B 44 52

    [22]

    Hilarius K, Lellinger D, Alig I, Villmow T, Pegel S, Pötschke P 2013 Polymer 54 5865

    [23]

    Wei J W, Pu L C, Hu N, Hu H F, Zeng H, Liang J W 2011 J. Chongqing Univ. Tech. (Natural Science) 35 94 (in Chinese) [韦建卫, 蒲利春, 胡南, 胡慧芳, 曾晖, 梁君武 2011 重庆理工大学学报(自然科学) 35 94]

    [24]

    Bai X D, Wang E G 2009 Chin. Basic Sci. 11 28 (in Chinese) [白雪冬, 王恩哥 2009 中国基础科学 11 28]

    [25]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [26]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [27]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

  • [1]

    Wei Y, Hu H F, Wang Z Y, Cheng C P, Chen N T, Xie N 2011 Acta Phys. Sin. 60 027307 (in Chinese) [魏燕, 胡慧芳, 王志勇, 程彩萍, 陈南庭, 谢能 2011 物理学报 60 027307]

    [2]

    Jin L, Fu H G, Xie Y, Yu H T 2012 Chin. Phys. B 21 057901

    [3]

    Kalbac M, Kavan L, Dunsch L, Dresselhaus M S 2008 Nano Lett. 8 1257

    [4]

    Yin L C, Saito R, Dresselhaus M S 2010 Nano Lett. 10 3290

    [5]

    Taheri S, Shadman M, Soltanabadi A, Ahadi Z 2014 Int. Nano Lett. 4 81

    [6]

    Nawazish A K, Sadaf A 2012 J. Alloys Compd. 538 183

    [7]

    Zhang L, Cao X W, Feng M, Wang Y F 2008 J. Light Scatt. 20 295 (in Chinese) [张磊, 曹学伟, 冯敏, 王玉芳 2008 光散射学报 20 295]

    [8]

    Li R, Sun D H 2014 Acta Phys. Sin. 63 056101 (in Chinese) [李瑞, 孙丹海 2014 物理学报 63 056101]

    [9]

    Wu H L, Qiu J S, Hao C, Tang Z A 2006 J. Dalian Univ. Tech. 46 328 (in Chinese) [吴红丽, 邱介山, 郝策, 唐祯安 2006 大连理工大学学报 46 328]

    [10]

    Zhang H, Chen X H, Zhang Z H, Qiu M 2006 Acta Phys. Chim. Sin. 22 1101 (in Chinese) [张华, 陈小华, 张振华, 邱明 2006 物理化学学报 22 1101]

    [11]

    Yuan J H, Cheng Y M 2007 Acta Phys. Chim. Sin. 23 889 (in Chinese) [袁剑辉, 程玉民 2007 物理化学学报 23 889]

    [12]

    Zhang L J, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 527 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤 2010 物理学报 59 527]

    [13]

    Niu W X, Zhang H, Gong M, Cheng X L 2013 Chin. Phys. B 22 066802

    [14]

    Barghi S H, Tsotsis T T, Sahimi M 2014 Int. J. Hydrogen Energy 39 21107

    [15]

    Zheng Q S, Xu Z P, Wang L F 2004 Adv. Mech. 34 97 (in Chinese) [郑泉水, 徐志平, 王立峰 2004 力学进展 34 97]

    [16]

    Sagara T, Kurumi S, Suzuki K 2014 Appl. Surf. Sci. 292 39

    [17]

    Cui S W, Zhu R Z, Wang X S, Yang H X 2014 Chin. Phys. B 23 106105

    [18]

    Shamsudin M S, Mohammad M, Zobir S A M, Asli N A, Bakar S A, Abdullah S, Yahya S Y S, Mahmood M R 2013 J. Nanostruct. Chem. 3 13

    [19]

    Cheng C P, Chen G H, Li W H, Luo C L 2012 J. Nanjing Norm. Univ. ( Natural Science Edition) 35 30 (in Chinese) [程承平, 陈贵虎, 李伟红, 罗成林 2012 南京师大学报(自然科学版) 35 30]

    [20]

    Wu Y D, Zhang X C, Zhong W F, Liang Y D 2006 J. Huazhong Univ. Sci. Tech. (Nature Science Edition) 34 110 (in Chinese) [吴永东, 张小春, 钟伟芳, 梁以德 2006 华中科技大学学报(自然科学版) 34 110]

    [21]

    Ghavamian A, Rahmandoust M, Öchsner A 2013 Composites Part B 44 52

    [22]

    Hilarius K, Lellinger D, Alig I, Villmow T, Pegel S, Pötschke P 2013 Polymer 54 5865

    [23]

    Wei J W, Pu L C, Hu N, Hu H F, Zeng H, Liang J W 2011 J. Chongqing Univ. Tech. (Natural Science) 35 94 (in Chinese) [韦建卫, 蒲利春, 胡南, 胡慧芳, 曾晖, 梁君武 2011 重庆理工大学学报(自然科学) 35 94]

    [24]

    Bai X D, Wang E G 2009 Chin. Basic Sci. 11 28 (in Chinese) [白雪冬, 王恩哥 2009 中国基础科学 11 28]

    [25]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [26]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [27]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

  • [1] Lü Xing, Fu Rong-Guo, Chang Ben-Kang, Guo Xin, Wang Zhi. Improvement and structure optimization of transmission-mode GaAs photocathode performance. Acta Physica Sinica, 2024, 73(3): 037801. doi: 10.7498/aps.73.20231542
    [2] Li Ting, Bi Xiao-Yue, Kong Jing-Wen. Mechanical and thermal properties of phosphorene under shear deformation. Acta Physica Sinica, 2023, 72(12): 126201. doi: 10.7498/aps.72.20230084
    [3] Zeng Fan-Ju, Tan Yong-Qian, Hu Wei, Tang Xiao-Sheng, Zhang Xiao-Mei, Yin Hai-Feng. Synthesis and optical properties of ultra-small Tin doped CsPbBr3 blue luminescence quantum dots. Acta Physica Sinica, 2022, 71(4): 047401. doi: 10.7498/aps.71.20211895
    [4] Synthesis and optical properties of ultra-small Tin doped CsPbBr3 blue luminescence quantum dots. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211895
    [5] Gong Ling-Yun, Zhang Ping, Chen qian, Lou Zhi-Hao, Xu Jie, Gao Feng. First principles study of structure and property of Nb5+-doped SrTiO3. Acta Physica Sinica, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [6] Liu Hai-Yong, Zhang Min, Lin Guo-Qiang, Han Ke-Chang, Zhang Lin. Structure and optical property of Cr-O films deposited by pulsed bias arc ion plating. Acta Physica Sinica, 2015, 64(13): 138104. doi: 10.7498/aps.64.138104
    [7] Shen Jie, Wei Bin, Zhou Jing, Shen Shirley Zhiqi, Xue Guang-Jie, Liu Han-Xing, Chen Wen. First-principle study of electronic structure and optical properties of Ba(Mg1/3Nb2/3)O3. Acta Physica Sinica, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [8] Yu Zhi-Qiang, Zhang Chang-Hua, Lang Jian-Xun. The electronic structure and optical properties of P-doped silicon nanotubes. Acta Physica Sinica, 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [9] Guo Yuan-Jun, Liu Rui-Ping, Yang Zhi, Li Xiu-Yan. Mechanical properties of transition metals doped Mo:a first-principals study. Acta Physica Sinica, 2014, 63(8): 087102. doi: 10.7498/aps.63.087102
    [10] Jia Xiao-Qin, He Zhi-Bing, Niu Zhon-Cai, He Xiao-Shan, Wei Jian-Jun, Li Rui, Du Kai. Influnce of heat treatment on the structure and optical properties of glow discharge polymer films. Acta Physica Sinica, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [11] Huang Xiao-Lin, Hou Li-Zhen, Yu Bo-Wen, Chen Guo-Liang, Wang Shi-Liang, Ma Liang, Liu Xin-Li, He Yue-Hui. Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures. Acta Physica Sinica, 2013, 62(10): 108102. doi: 10.7498/aps.62.108102
    [12] Zhang Rui-Shuo, Liu Yong, Teng Fan, Song Chen-Lu, Han Gao-Rong. Electronic and optical properties of anatase and rutile TiO2:Nb. Acta Physica Sinica, 2012, 61(1): 017101. doi: 10.7498/aps.61.017101
    [13] Guan Dong-Bo, Mao Jian. First principles study of the electronic structure and optical properties of Magnli phase titanium suboxides Ti8O15. Acta Physica Sinica, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [14] Zhao Jing, Zhang Yi-Jun, Chang Ben-Kang, Xiong Ya-Juan, Zhang Jun-Ju, Shi Feng, Cheng Hong-Chang, Cui Dong-Xu. Research on quantum efficient fitting and structure of high performance transmission-mode GaAs photocathode. Acta Physica Sinica, 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [15] Wang Zhi-Yong, Hu Hui-Fang, Gu Lin, Wang Wei, Jia Jin-Feng. Electronic and optical properties of zigzag graphene nanoribbon with Stone-Wales defect. Acta Physica Sinica, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [16] Wu Xue-Wei, Wu Da-Jian, Liu Xiao-Jun. Effects of B(N, F) doping on optical properties of TiO2 nanoparticles. Acta Physica Sinica, 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [17] Zhang Li-Juan, Hu Hui-Fang, Wang Zhi-Yong, Wei Yan, Jia Jin-Feng. Study on the electronic structure and optical properties of B-doped single-walled carbon nanotubes for formaldehyde adsorption. Acta Physica Sinica, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [18] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [19] Xing Hai-Ying, Fan Guang-Han, Zhao De-Gang, He Miao, Zhang Yong, Zhou Tian-Ming. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [20] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
Metrics
  • Abstract views:  4905
  • PDF Downloads:  148
  • Cited By: 0
Publishing process
  • Received Date:  31 December 2014
  • Accepted Date:  27 February 2015
  • Published Online:  05 July 2015

/

返回文章
返回