Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation on relationship between power/phase stability of low frequency oscillatory potentials and activity of dipole current

Ge Man-Ling Wei Meng-Jia Shi Peng-Fei Chen Ying Fu Xiao-Xuan Guo Bao-Qiang Zhang Hui-Juan

Citation:

Simulation on relationship between power/phase stability of low frequency oscillatory potentials and activity of dipole current

Ge Man-Ling, Wei Meng-Jia, Shi Peng-Fei, Chen Ying, Fu Xiao-Xuan, Guo Bao-Qiang, Zhang Hui-Juan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The physical parameters, e.g. power and phase, are usually employed in the neural analysis of brain rhythms, which are important in brain function and disease diagnosis. Though there has been extensive work, how both parameters are related to the electrical properties of brain tissue and the sources of brain rhythms has not been fully understood. To address the issue, a simulation is done based on the theory of dipole current. When referring to the solution to the forward problem in electroencephalograph, the brain is regarded as a homogenous sphere model, the electrical features of brain tissue are described by an isotropic electrical conductivity. The source of brain rhythms is simulated by the quasi-static dipole current whose activity is described as a sine oscillation at low frequency. The electrical field generated by the dipole current is considered to be quasi-static. By changing the amplitude and the phase time course of oscillatory dipole current, the distribution of potentials produced by the dipole current at a time-point could be calculated by applying the finite element method to the sphere model. Over a time period of sine oscillation, the oscillatory potentials regarded as the brain rhythms could be produced. Instantaneous power and phase of simulated rhythms are estimated by Hilbert transform, and then a method of phase stability in narrow-band is developed for a single oscillator. To highlight this method, three manners are employed to describe it, i.e., mean relative phase value termed phase preserved index, histogram on rose plane, and phase sorting with the help of EEGLAB. Finally the relationship between two physical parameters and the electrical features of brain tissue/the source activity of brain rhythms is investigated under the conditions of (an) isotropy of conductivity, linear or nonlinear phase dynamics and amplitude, eccentricity of dipole current, etc. The statistical methods of t-test and bootstrapping technology are performed respectively to show the significance of power and phase stability. It is obtained that the power of simulated rhythms decreases with the increase of electrical conductivity, and it is not only proportional to the square of the amplitude of dipole current, but also correlated with the anisotropy of conductivity and the locations of dipole current as well as meshes on the sphere model, however no relevance to other factors. On the contrary, the phase stability of simulated rhythms is correlated only with the non-linear time course of their own phase dynamics. The results imply that the power of brain rhythms is related to many factors such as brain tissue and amplitude of rhythm generator as well as placements of recording electrodes, but the phase stability is related only to the non-linear phase dynamics of brain rhythms. Thus, the electrical significance of the power is more complicated than that of the phase stability. This work might be helpful for understanding in depth the significance of both physical parameters from the perspective of electricity. The narrow-band phase stability of simulated rhythms could highlight the non-linear phase dynamics. It is hypothesized that the phase stability could not only map the synchrony in the neural activity as a custom means of phase coherence, but also reflect directly the non-linearity in phase dynamics, and the more divergent the phase dynamics, the lower the phase stability is, and vice verse. Therefore it is suggested that the phase stability of brain rhythms could be related closely to the non-linear factors to affect the phase dynamics of brain rhythms, e.g., the non-linear phase dynamics of rhythm generators. It is also suggested that both parameters of power and phase stability would offer more neural information.
    • Funds: Project supported by the Colleges and Universities of Hebei Province Science and Technology Research Projects, China (Grant No. ZD2014026).
    [1]

    Buzsaki G 2006 Rhythm of the Brain (New York: Oxford University Press) pp1-464

    [2]

    Mormann F, Fell J, Axmacher N, Weber B, Lehnertz K, Elger C E, Fernandez G 2005 Hippocampus 15 890

    [3]

    Lachaux J P, Rodriguez E, Martinerie J, Varela F J 1999 Human Brain Mapping 8 194

    [4]

    Chauviere L, Rafrafi N, Thinus-Blanc C, Bartolomei F, Esclapez M, Bernard C 2009 J. Neurosci. 29 5402

    [5]

    Uhlhaas P J, Singer W 2006 Neuron 52 155

    [6]

    Winson J 1978 Science 201 160

    [7]

    Kraskov A, Quiroga R Q, Reddy L, Fried I, Koch C 2007 J. Cogn. Neurosci. 19 479

    [8]

    Ali M O J 2006 Proc. Natl. Acad. Sci. USA 13 2948

    [9]

    Mormann F, Lehnertz K, David P, Elger C E 2000 Phys. D 144 358

    [10]

    Zhang D D, Luo Y J 2011 Adv. Psychol. Sci. 19 487 (in Chinese) [张丹丹, 罗跃嘉 2011 心理科学进展 19 487]

    [11]

    Delorme A, Makeig S 2004 J. Neurosci. Methods 134 9

    [12]

    Gramfort A, Luessi M, Larson E, Engemann D A, Strohmeier D, Brodbeck C, Parkkonen L, Hamalainen M S 2013 Neuroimage 86 446

    [13]

    Litvak V, Mattout J, Kiebel S, Phillips C, Henson R, Kilner J, Barnes G, Oostenveld R, Daunizeau J, Flandin G, Penny W, Friston K 2011 Comput. Intell. Neurosci. 2011 852961

    [14]

    Wiener N 1956 J. Phys. Soc. Jpn. 18 499

    [15]

    Wiener N 1957 Proc. Rudolf Virchow Med. Soc. City NY 16 109

    [16]

    Qiu J H, Li Y T, Xu K H, Yang Z, Zhang T 2008 Acta Biophys. Sin. 24 221 (in Chinese) [裘嘉恒, 李雅堂, 许坤涵, 杨卓, 张涛 2008 生物物理学报 24 221]

    [17]

    Zheng C G, Quan M N, Yang Z, Zhang T 2011 Neurosci. Lett. 490 52

    [18]

    Ge M L, Wang D H, Dong G Y, Guo B Q, Gao R G, Sun W, Zhang J J, Liu H S 2013 Experimen. Neurol. 250 136

    [19]

    Ge M L, Guo B Q, Chen X, Sun Y, Chen S H, Zheng Y, Zhang H J, Sun W 2014 Acta Physiol. Sin. 66 118 (in Chinese) [葛曼玲, 郭宝强, 陈雪, 孙英, 陈盛华, 郑颖, 张惠娟, 孙伟 2014 生理学报 66 118]

    [20]

    De Munck J C, van Dijk B W, Spekreijse H 1988 IEEE Trans. Biomed. Eng. 35 960

    [21]

    da Silva F L, van Rotterdam A 1982 Biophysical Aspects of EEG, MEG Generation, 15 In: Niedermeyer E, da Silva F L eds. Electroencephalography: Basic Principles, Clinical Applications and Related Fields (Baltimore MD: Lippincott Williams & Wilkins) pp1-1156

    [22]

    Yao D Z 1998 Chin. J. Biomed. Engineer. 17 97 (in Chinese) [尧德中 1998 中国生物医学工程学报 17 97]

    [23]

    Zhu H Y, Li J, Luo B 2002 Acta Phys. Sin. 51 2393 (in Chinese) [朱红毅, 李军, 罗斌 2002 物理学报 51 2393]

    [24]

    Wu C Q, Zhao S 2007 Acta Phys. Sin. 56 5180 (in Chinese) [吴重庆, 赵爽 2007 物理学报 56 5180]

    [25]

    Wan B K, Xue Z J, Cheng L L, Zhu X 2006 Prog. Nat. Sci. 16 881 (in Chinese) [万柏坤, 薛召军, 程龙龙, 朱欣 2006 自然科学进展 16 881]

    [26]

    Li J, Wang K, Liu J, Zhu S A, He B 2007 Chin. J. Sens. Actuat. 20 1736 (in Chinese) [李璟, 王琨, 刘君, 朱善安, He Bin 2007 传感技术学报 20 1736]

    [27]

    Kim S, Kim T S, Zhou Y, Singh M 2003 IEEE Trans. Nucl. Sci. 50 133

    [28]

    Gulrajani R M 1998 Bioelectricity and Biomagnetism (New York: John Wiley and Sons Inc) pp1-744

    [29]

    Chen C, Li D G, Jiang Z G, Liu H B 2012 Acta Phys. Sin. 61 244101 (in Chinese) [陈聪, 李定国, 蒋治国, 刘华波 2012 物理学报 61 244101]

    [30]

    Haueisen J, Tuch D S, Ramon C, Schimpf P H, Wedeen V J, George J S, Belliveau J W 2002 Neuroimage 15 159

    [31]

    Zhang Y C, Ding L, Drongelen W V, Hecox K, Frim D M, He B 2006 Neuroimage 31 1513

    [32]

    Nunez P L, Srinivasan R, Westdorp A F, Wijesinghe R S, Tucker D M, Silberstein R B, Cadusch P J 1997 Electroencephalogr. Clin. Neurophysiol. 103 499

    [33]

    Wolters C H, Anwander A, Tricoche X, Weinstein D, Koch M A, MacLeod R S 2006 Neuroimage 30 813

    [34]

    Li J, Yan D D 2009 J. China Jiliang Univ. 20 180 (in Chinese) [李璟, 闫丹丹 2009 中国计量学院学报 20 180 ]

    [35]

    Tuch D S, Wedeen V J, Dale A M, George J S, Belliveau J W 2001 Proc. Natl. Acad. Sci. USA 98 11697

    [36]

    Yan Y, Nunez P L, Hart R T 1991 Med. Biol. Eng. Comput. 29 475

    [37]

    McAdams E T, Jossinet J 1995 Physiol. Meas. 16 A1

    [38]

    Ma X S, Zhang J S, Wang P 1995 Fundamentals of Electromagnetic Fields (Beijing: Tsinghua University Press) pp1-352 (in Chinese) [马信山, 张济世, 王平 1995 电磁场基础 (北京: 清华大学出版社) 第1-352页]

    [39]

    Brody D A, Terry F H, Ideker R E 1973 IEEE Trans. Biomed. Eng. 20 141

    [40]

    Yao D Z 2003 Electricity Theory and Methods of Bran Function Detection (Beijing: Science Press) pp1-336 (in Chinese) [尧德中 2003 脑功能探测的电学理论与方法 (北京: 科学出版社) 第1-336页]

    [41]

    Rosenblum M G, Pikovsky A S, Kurths J 1996 Phys. Rev. Lett. 76 1804

    [42]

    Mormanna F, Kreuz T, Andrzejak R G, David P, Lehnertz K, Elger C E 2003 Epilepsy Res. 53 173

    [43]

    Krusienski D J 2012 Brain Res. Bull. 87 130

    [44]

    Sih G C, Tang K K 2012 Theor. Appl. Fract. Mech. 62 1

    [45]

    Schnitzler A, Gross J 2005 Nat. Rev. Neurosci. 6 285

    [46]

    Wang X J 2010 Physiol. Rev. 90 1195

    [47]

    Fujisaka H, Yamada T 1983 Prog. Theor. Phys. 69 32

    [48]

    Abascal J F, Arridge S R, Atkinson D, Horesh R, Fabrizi L, de Lucia M, Horesh L, Bayford R H, Holder D S 2008 Neuroimage 43 258

  • [1]

    Buzsaki G 2006 Rhythm of the Brain (New York: Oxford University Press) pp1-464

    [2]

    Mormann F, Fell J, Axmacher N, Weber B, Lehnertz K, Elger C E, Fernandez G 2005 Hippocampus 15 890

    [3]

    Lachaux J P, Rodriguez E, Martinerie J, Varela F J 1999 Human Brain Mapping 8 194

    [4]

    Chauviere L, Rafrafi N, Thinus-Blanc C, Bartolomei F, Esclapez M, Bernard C 2009 J. Neurosci. 29 5402

    [5]

    Uhlhaas P J, Singer W 2006 Neuron 52 155

    [6]

    Winson J 1978 Science 201 160

    [7]

    Kraskov A, Quiroga R Q, Reddy L, Fried I, Koch C 2007 J. Cogn. Neurosci. 19 479

    [8]

    Ali M O J 2006 Proc. Natl. Acad. Sci. USA 13 2948

    [9]

    Mormann F, Lehnertz K, David P, Elger C E 2000 Phys. D 144 358

    [10]

    Zhang D D, Luo Y J 2011 Adv. Psychol. Sci. 19 487 (in Chinese) [张丹丹, 罗跃嘉 2011 心理科学进展 19 487]

    [11]

    Delorme A, Makeig S 2004 J. Neurosci. Methods 134 9

    [12]

    Gramfort A, Luessi M, Larson E, Engemann D A, Strohmeier D, Brodbeck C, Parkkonen L, Hamalainen M S 2013 Neuroimage 86 446

    [13]

    Litvak V, Mattout J, Kiebel S, Phillips C, Henson R, Kilner J, Barnes G, Oostenveld R, Daunizeau J, Flandin G, Penny W, Friston K 2011 Comput. Intell. Neurosci. 2011 852961

    [14]

    Wiener N 1956 J. Phys. Soc. Jpn. 18 499

    [15]

    Wiener N 1957 Proc. Rudolf Virchow Med. Soc. City NY 16 109

    [16]

    Qiu J H, Li Y T, Xu K H, Yang Z, Zhang T 2008 Acta Biophys. Sin. 24 221 (in Chinese) [裘嘉恒, 李雅堂, 许坤涵, 杨卓, 张涛 2008 生物物理学报 24 221]

    [17]

    Zheng C G, Quan M N, Yang Z, Zhang T 2011 Neurosci. Lett. 490 52

    [18]

    Ge M L, Wang D H, Dong G Y, Guo B Q, Gao R G, Sun W, Zhang J J, Liu H S 2013 Experimen. Neurol. 250 136

    [19]

    Ge M L, Guo B Q, Chen X, Sun Y, Chen S H, Zheng Y, Zhang H J, Sun W 2014 Acta Physiol. Sin. 66 118 (in Chinese) [葛曼玲, 郭宝强, 陈雪, 孙英, 陈盛华, 郑颖, 张惠娟, 孙伟 2014 生理学报 66 118]

    [20]

    De Munck J C, van Dijk B W, Spekreijse H 1988 IEEE Trans. Biomed. Eng. 35 960

    [21]

    da Silva F L, van Rotterdam A 1982 Biophysical Aspects of EEG, MEG Generation, 15 In: Niedermeyer E, da Silva F L eds. Electroencephalography: Basic Principles, Clinical Applications and Related Fields (Baltimore MD: Lippincott Williams & Wilkins) pp1-1156

    [22]

    Yao D Z 1998 Chin. J. Biomed. Engineer. 17 97 (in Chinese) [尧德中 1998 中国生物医学工程学报 17 97]

    [23]

    Zhu H Y, Li J, Luo B 2002 Acta Phys. Sin. 51 2393 (in Chinese) [朱红毅, 李军, 罗斌 2002 物理学报 51 2393]

    [24]

    Wu C Q, Zhao S 2007 Acta Phys. Sin. 56 5180 (in Chinese) [吴重庆, 赵爽 2007 物理学报 56 5180]

    [25]

    Wan B K, Xue Z J, Cheng L L, Zhu X 2006 Prog. Nat. Sci. 16 881 (in Chinese) [万柏坤, 薛召军, 程龙龙, 朱欣 2006 自然科学进展 16 881]

    [26]

    Li J, Wang K, Liu J, Zhu S A, He B 2007 Chin. J. Sens. Actuat. 20 1736 (in Chinese) [李璟, 王琨, 刘君, 朱善安, He Bin 2007 传感技术学报 20 1736]

    [27]

    Kim S, Kim T S, Zhou Y, Singh M 2003 IEEE Trans. Nucl. Sci. 50 133

    [28]

    Gulrajani R M 1998 Bioelectricity and Biomagnetism (New York: John Wiley and Sons Inc) pp1-744

    [29]

    Chen C, Li D G, Jiang Z G, Liu H B 2012 Acta Phys. Sin. 61 244101 (in Chinese) [陈聪, 李定国, 蒋治国, 刘华波 2012 物理学报 61 244101]

    [30]

    Haueisen J, Tuch D S, Ramon C, Schimpf P H, Wedeen V J, George J S, Belliveau J W 2002 Neuroimage 15 159

    [31]

    Zhang Y C, Ding L, Drongelen W V, Hecox K, Frim D M, He B 2006 Neuroimage 31 1513

    [32]

    Nunez P L, Srinivasan R, Westdorp A F, Wijesinghe R S, Tucker D M, Silberstein R B, Cadusch P J 1997 Electroencephalogr. Clin. Neurophysiol. 103 499

    [33]

    Wolters C H, Anwander A, Tricoche X, Weinstein D, Koch M A, MacLeod R S 2006 Neuroimage 30 813

    [34]

    Li J, Yan D D 2009 J. China Jiliang Univ. 20 180 (in Chinese) [李璟, 闫丹丹 2009 中国计量学院学报 20 180 ]

    [35]

    Tuch D S, Wedeen V J, Dale A M, George J S, Belliveau J W 2001 Proc. Natl. Acad. Sci. USA 98 11697

    [36]

    Yan Y, Nunez P L, Hart R T 1991 Med. Biol. Eng. Comput. 29 475

    [37]

    McAdams E T, Jossinet J 1995 Physiol. Meas. 16 A1

    [38]

    Ma X S, Zhang J S, Wang P 1995 Fundamentals of Electromagnetic Fields (Beijing: Tsinghua University Press) pp1-352 (in Chinese) [马信山, 张济世, 王平 1995 电磁场基础 (北京: 清华大学出版社) 第1-352页]

    [39]

    Brody D A, Terry F H, Ideker R E 1973 IEEE Trans. Biomed. Eng. 20 141

    [40]

    Yao D Z 2003 Electricity Theory and Methods of Bran Function Detection (Beijing: Science Press) pp1-336 (in Chinese) [尧德中 2003 脑功能探测的电学理论与方法 (北京: 科学出版社) 第1-336页]

    [41]

    Rosenblum M G, Pikovsky A S, Kurths J 1996 Phys. Rev. Lett. 76 1804

    [42]

    Mormanna F, Kreuz T, Andrzejak R G, David P, Lehnertz K, Elger C E 2003 Epilepsy Res. 53 173

    [43]

    Krusienski D J 2012 Brain Res. Bull. 87 130

    [44]

    Sih G C, Tang K K 2012 Theor. Appl. Fract. Mech. 62 1

    [45]

    Schnitzler A, Gross J 2005 Nat. Rev. Neurosci. 6 285

    [46]

    Wang X J 2010 Physiol. Rev. 90 1195

    [47]

    Fujisaka H, Yamada T 1983 Prog. Theor. Phys. 69 32

    [48]

    Abascal J F, Arridge S R, Atkinson D, Horesh R, Fabrizi L, de Lucia M, Horesh L, Bayford R H, Holder D S 2008 Neuroimage 43 258

  • [1] Tian Li-Ping, Shen Ling-bin, Chen Ping, Liu Yu-zhu, Chen Lin, Hui Dan-dan, Chen Xi-ru, Zhao Wei, Xue Yan-hua. 100 fs time-resolved streak tube design based on anisotropy and post-acceleration technology. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [2] Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Wang Gang. Influence of electron temperature anisotropy on power deposition characteristic of helicon wave. Acta Physica Sinica, 2024, 73(7): 075202. doi: 10.7498/aps.73.20231759
    [3] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] Zhang Gao-Jian, Wang Yi-Pu. Observation of the anisotropic exceptional point in cavity magnonics system. Acta Physica Sinica, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [5] Lu Min, Huang Hui-Lian, Yu Dong-Hai, Liu Wei-Qing, Wei Wang-He. Anisotropy of melting of Ag nanocrystal with different crystallographic planes at high temperature. Acta Physica Sinica, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [6] Liu Jian-Xiao, Zhang Jun-Liang, Su Ming-Min. Finite-difference time domain method for the analysis of radar scattering characteristic of metal target coated with anisotropic ferrite. Acta Physica Sinica, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [7] Wang Ding, Zhang Mei-Gen. Elastic wave propagation characteristics under anisotropic squirt-flow condition. Acta Physica Sinica, 2014, 63(6): 069101. doi: 10.7498/aps.63.069101
    [8] Wan Jin, Tian Yu, Zhou Ming, Zhang Xiang-Jun, Meng Yong-Gang. Experimental research of load effect on the anisotropic friction behaviors of gecko seta array. Acta Physica Sinica, 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [9] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [10] Wang Hao, Liu Guo-Quan, Luan Jun-Hua. Study on 3D von Neumann equation with anisotropy for convex grains. Acta Physica Sinica, 2012, 61(4): 048102. doi: 10.7498/aps.61.048102
    [11] Wan Yong, Han Wen-Juan, Liu Jun-Hai, Xia Lin-Hua, Xavier Mateos, Valentin Petrov, Zhang Huai-Jin, Wang Ji-Yang. Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 crystal. Acta Physica Sinica, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [12] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Yang Guo-Hui. Transmission characteristics of a rectangular waveguide filled with anisotropic metamaterial. Acta Physica Sinica, 2008, 57(9): 5476-5484. doi: 10.7498/aps.57.5476
    [13] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Gu Xue-Mai, Li Le-Wei. Resonance characteristics of a three-dimensional anisotropic metamaterial bilayer. Acta Physica Sinica, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [14] Zhou Jian-Hua, Liu Hong-Yao, Luo Hai-Lu, Wen Shuang-Chun. Backward wave propagation in anisotropic metamaterials. Acta Physica Sinica, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [15] Wang Zhi-Jun, Wang Jin-Cheng, Yang Gen-Cang. The asymptotic analysis of interfacial stability with surface tension anisotropy for directional solidification of alloys. Acta Physica Sinica, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [16] Yang Hong-Wei, Yuan Hong, Chen Ru-Shan, Yang Yang. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [17] Weng Zi-Mei, Chen Hao. Solitons in a one-dimensional ferromagnetic chain under the influence of single-ion anisotropy. Acta Physica Sinica, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [18] Mu Quan-Quan, Liu Yong-Jun, Hu Li-Fa, Li Da-Yu, Cao Zhao-Liang, Xuan Li. Determination of anisotropic liquid crystal layer parameters by spectroscopic ellipsometer. Acta Physica Sinica, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [19] Zhuang Fei, Shen Jian-Qi. Investigation of photon geometric phases inside a curved fiber made of biaxially anisotropic left-handed media. Acta Physica Sinica, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [20] . Acta Physica Sinica, 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
Metrics
  • Abstract views:  4124
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2014
  • Accepted Date:  11 March 2015
  • Published Online:  05 July 2015

/

返回文章
返回