Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study

Zhang Li-Yong Fang Liang Peng Xiang-Yang

Citation:

Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study

Zhang Li-Yong, Fang Liang, Peng Xiang-Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using first principles calculations within density functional theory, we investigate the electronic property of a single-layer MoS2 adsorbed on Au. All the quantities are calculated using the Vienna ab initio simulation package. Calculations are performed using the projector augmented wave method with the Perdew-Burke-Ernzerhof functional and a kinetic energy cutoff of 400 eV. The atomic plane and its neighboring image are separated by a 15 Å vacuum layer. The k-meshes for the structure relaxation and post analysis are 9×9×1 and 19×19×1, respectively. The spin-orbit coupling is considered in the calculation. The research includes the binding energy, the band structure, density of states (DOS) and electric charge difference density. Three contact modes between MoS2 (0001) and Au (111) are considered. When the atom S layer and the atom Au layer on the contacting interface have the same structure, the minimum binding energy and distance between MoS2 (0001) and Au(111) are 2.2 eV and 2.5 Å respectively. The minimum binding energy confirms that the absorption is unstable. The band structure demonstrates that the MoS2-Au contact nature is of the Schottky-barrier type, and the barrier height is 0.6 eV which is bigger than MoS2-Sc contact. By comparison with other metal contacts such as Ru(0001), Pd(111) and Ir(111), the dependence of the barrier height on the work function difference exhibits a Fermi-level pinning. But the MoS2 is so thin that the Fermi-level pinning must be very small. Maybe there is a metal induced gap state. DOS points out that the Au substrate has no influence on the covalent bond between Mo and S. The influence of the Au substrate is that it shifts the DOS of monolayer MoS2 left on the axis. The change of DOS results in the increases of electron concentration and electric conductivity. Other calculation points out that Ti substrate can excite more electrons. Electric charge density difference demonstrates that there are a few electric charges that transfer on the contact interface. The conducting path of monolayer MoS2 may emerge at the interface between Au and MoS2. In summary, the Au electrode is not the best electrode in the MoS2 device. The Ti electrode can excite more electrons from MoS2. The work function of Sc electrode is close to the affine of MoS2. The Fermi energy level of graphene can be tuned by external voltage. So the Ti, Sc and graphene will be the better electrodes for MoS2 device. Results of this study may provide a theoretical basis for single-layer MoS2 transistor and guidance for its applications.
      Corresponding author: Fang Liang, lfang@nudt.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61332003).
    [1]

    Ahn H S, Kim J M, Park C, Jang J W, Lee J S, Kim H, Kaviany M, Kim M H 2013 Sci. Rep. 3 1960

    [2]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 35 372

    [3]

    Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2014 ACS Nano 82 1102

    [4]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [5]

    Wang Q H, Kalantar Z K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [6]

    Kuc A, Zibouche N, Heine T 2011 Phys. Rev. Lett. 83 245213

    [7]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [8]

    Wu W Z, Wang L, Li Y L, Zhang F, Lin L, Niu S M, Chenet D, Zhang X, Hao Y F, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470

    [9]

    Wang Z Y, Zhou Y L, Wang X Q, Wang F, Sun Q, Guo Z X, Jia Y 2015 Chin. Phys. B 24 026501

    [10]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102(in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [11]

    Yue Q, Kang J, Shao Z Z, Zhang X A, Chang S L, Wang G, Qin S Q, Li J B 2012 Phys. Lett. A 376 1166

    [12]

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102(in Chinese) [曹娟, 崔磊, 潘靖 2013 物理学报 62 187102]

    [13]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934

    [14]

    Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [15]

    Late D J, Liu B, Matte H H S S R, Dravid V P, Rao C N R 2012 ACS Nano 66 5635

    [16]

    Kiriya D, Tosun M, Zhao P D, Kang J S, Javey A 2014 J. Am. Chem. Soc. 136 7853

    [17]

    Bao W Z, Cai X H, Kim D, Sridhara K, Fuhrer M S 2013 Appl. Phys. Lett. 102 042104

    [18]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2012 Nano Lett. 13 100

    [19]

    Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739

    [20]

    Cai Y Q, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269

    [21]

    Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307

    [22]

    Li W F, Guo M, Zhang G, Zhang Y W 2014 Chem. Mater. 26 5625

    [23]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [24]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [25]

    Monkhorst H J, Pack J F 1979 Phys. Rev. B 13 5188

    [26]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101(in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 物理学报 63 117101]

    [27]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [28]

    Chen W, Santos E J G, Zhu W G, Kaxiras E, Zhang Z Y 2013 Nano Lett. 13 509

    [29]

    Igor P, Gotthard S, David T 2012 Phys. Rev. Lett. 108 156802

    [30]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

  • [1]

    Ahn H S, Kim J M, Park C, Jang J W, Lee J S, Kim H, Kaviany M, Kim M H 2013 Sci. Rep. 3 1960

    [2]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 35 372

    [3]

    Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2014 ACS Nano 82 1102

    [4]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [5]

    Wang Q H, Kalantar Z K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [6]

    Kuc A, Zibouche N, Heine T 2011 Phys. Rev. Lett. 83 245213

    [7]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [8]

    Wu W Z, Wang L, Li Y L, Zhang F, Lin L, Niu S M, Chenet D, Zhang X, Hao Y F, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470

    [9]

    Wang Z Y, Zhou Y L, Wang X Q, Wang F, Sun Q, Guo Z X, Jia Y 2015 Chin. Phys. B 24 026501

    [10]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102(in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [11]

    Yue Q, Kang J, Shao Z Z, Zhang X A, Chang S L, Wang G, Qin S Q, Li J B 2012 Phys. Lett. A 376 1166

    [12]

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102(in Chinese) [曹娟, 崔磊, 潘靖 2013 物理学报 62 187102]

    [13]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934

    [14]

    Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [15]

    Late D J, Liu B, Matte H H S S R, Dravid V P, Rao C N R 2012 ACS Nano 66 5635

    [16]

    Kiriya D, Tosun M, Zhao P D, Kang J S, Javey A 2014 J. Am. Chem. Soc. 136 7853

    [17]

    Bao W Z, Cai X H, Kim D, Sridhara K, Fuhrer M S 2013 Appl. Phys. Lett. 102 042104

    [18]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2012 Nano Lett. 13 100

    [19]

    Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739

    [20]

    Cai Y Q, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269

    [21]

    Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307

    [22]

    Li W F, Guo M, Zhang G, Zhang Y W 2014 Chem. Mater. 26 5625

    [23]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [24]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [25]

    Monkhorst H J, Pack J F 1979 Phys. Rev. B 13 5188

    [26]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101(in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 物理学报 63 117101]

    [27]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [28]

    Chen W, Santos E J G, Zhu W G, Kaxiras E, Zhang Z Y 2013 Nano Lett. 13 509

    [29]

    Igor P, Gotthard S, David T 2012 Phys. Rev. Lett. 108 156802

    [30]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

  • [1] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [2] Zhou Jia-Jian, Zhang Yu-Wen, He Chao-Yu, Ouyang Tao, Li Jin, Tang Chao. First-principles study of structure prediction and electronic properties of two-dimensional SiP2 allotropes. Acta Physica Sinica, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [3] Wu Fan-Fan, Ji Yi-Ru, Yang Wei, Zhang Guang-Yu. Experimental research progress of electronic band structure and low temperature transport based on molybdenum disulfide. Acta Physica Sinica, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [4] Liu Kai-Long, Peng Dong-Sheng. Effects of photoelectric properties of monolayer MoS2 under tensile strain. Acta Physica Sinica, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [5] Luo Xiong, Meng Wei-Wei, Chen Guo-Xu-Jia, Guan Xiao-Xi, Jia Shuang-Feng, Zheng He, Wang Jian-Bo. First-principles study of stability, electronic and optical properties of two-dimensional Nb2SiTe4-based materials. Acta Physica Sinica, 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [6] Meng Fan, Hu Jin-Hua, Wang Hui, Zou Ge-Yin, Cui Jian-Gong, Zhao Yue. Fluorescence enhancement of monolayer MoS2 in plasmonic resonator. Acta Physica Sinica, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [7] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [8] Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min. Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light. Acta Physica Sinica, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [9] Wei Yang, Ma Xin-Guo, Zhu Lin, He Hua, Huang Chu-Yun. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure. Acta Physica Sinica, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [10] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [11] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [12] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [13] Lei Tian-Min, Wu Sheng-Bao, Zhang Yu-Ming, Guo Hui, Chen De-Lin, Zhang Zhi-Yong. Effects of La, Ce and Nd doping on the electronic structure of monolayer MoS2. Acta Physica Sinica, 2014, 63(6): 067301. doi: 10.7498/aps.63.067301
    [14] Linghu Jia-Jun, Liang Gong-Ying. First-principles study on the luminescence property of In-doped ZnTe. Acta Physica Sinica, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [15] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [16] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [17] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [18] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [19] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
Metrics
  • Abstract views:  5709
  • PDF Downloads:  588
  • Cited By: 0
Publishing process
  • Received Date:  24 March 2015
  • Accepted Date:  16 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回