Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys

Ma Zhen-Ning Jiang Min Wang Lei

Citation:

First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys

Ma Zhen-Ning, Jiang Min, Wang Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the paper, the first-principles pseudopotential plane-wave method based on density functional theory is used to investigate the crystal structures, enthalpies of formation and electronic structures of X-Mg12YZn phase and W-Mg3Y2Zn3 phase in Mg-Y-Zn alloys. The obtained lattice constants of two phases are in good agreement with the available experimental values, which can reasonably reflect the accuracy of theoretical calculation. The calculated enthalpies of formation indicate that the W-Mg3Y2Zn3 and X-Mg12YZn phases have negative enthalpies of formation, which are-0.2787 eV/atom and-0.0268 eV/atom respectively. Both phases can form stable structures relative to single crystals Mg, Y and Zn, and the enthalpy of formation of W-Mg3Y2Zn3 phase is lower than that of X-Mg12YZn phase. The results for density of states show that the bonding of W-Mg3Y2Zn3 phase occurs mainly among the valence electrons of Mg 2p, Zn 3p and Y 4d orbits, the bonding peaks between-2.53 and 0 eV are derived from the hybridization of Mg 2p, Zn 3p and Y 4d orbits, the peaks between 5.07 and 7.51 eV predominantly originate from the hybridization of Mg 2p and Y 4d orbits. However, the bonding of X-Mg12YZn phase is mainly among the valence electrons of Mg 3s, Mg 2p, Zn 3p and Y 4d orbits. The bonding peaks between-2.30 and 0 eV originate mainly from 2p, 3p, and 4d orbit hybridization of Mg, Zn and Y, the peaks between 0 and 2.08 eV originate from the hybridization of Mg 3s, Mg 2p, Zn 3p and Y 4d orbits. At the same time, there is a pseudo-gap near each Fermi level of W-Mg3Y2Zn3 and X-Mg12YZn phases, which implies the presence of covalent bonding in the two phases. In addition, the charge densities respectively on (011) plane of W-Mg3Y2Zn3 phase and (0001) plane of X-Mg12YZn phase are analyzed, and the results indicate that the Zn-Y band exhibits covalent features in W-Mg3Y2Zn3 phase and X-Mg12YZn phase, the covalent bonding of W-Mg3Y2Zn3 phase is stronger than that of X-Mg12YZn phase. Compared with X-Mg12YZn phase, W-Mg3Y2Zn3 phase has a good phase stability attributed to its more bonding electron numbers in a low-energy region of the Fermi level.
      Corresponding author: Jiang Min, Jiangm@smm.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50971036), and the National High Technology Research and Development Program of China (Grant No. 2013AA031601).
    [1]

    Saal James E, Wolverton C 2014 Acta Mater. 68 325

    [2]

    Duan P P, Xing H, Chen Z, Hao G H, Wang B H, Jin K X 2015 Acta Phys. Sin. 64 060201(in Chinese) [段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新 2015 物理学报 64 060201]

    [3]

    Rosalie J M, Somekawa H, Singh A, Mukai T 2013 J. Alloys. Compd. 550 114

    [4]

    Shin D, Wolverton C 2010 Scripta Mater. 63 680

    [5]

    Zhang Q, Fu L, Fan T W, Tang B Y, Peng L M, Ding W J 2013 Physica B 416 39

    [6]

    Tane M, Nagai Y, Kimizuka H, Hagihara K, Kawamura Y 2013 Acta Mater. 61 6338

    [7]

    Wu M M, Jiang Y, Wang J W, Wu J, Tang B Y, Peng L M, Ding W J 2011 J. Alloys Compd 509 2885

    [8]

    Kawamura Y, Hayashi K, Inoue A, Masumoto T 2001 Mater. Trans. 42 1172

    [9]

    Abe E, Kawamura Y, Hayashi K, Inoue A 2002 Acta Mater. 50 3845

    [10]

    Luo Z P, Zhang S Q 2000 J. Mater. Sci. Lett. 19 813

    [11]

    Matsuda M, Ii S, Kawamura Y, IkuharaY, Nishida M 2005 Mater. Sci. Eng. A 393 269

    [12]

    Gröbner J, Kozlov A, Fang X Y, Geng J, Nie J F, Schmid-Fetzer R 2012 Acta Mater. 60 5948

    [13]

    Sahlberg M, Andersson Y 2007 J. Alloys. Compd. 446 134

    [14]

    Zhu Y M, Morton A J, Nie J F 2010 Acta Mater. 58 2936

    [15]

    Zheng S W, Fan G H, Zhang T, Pi H, Xu K F 2014 Acta Phys. Sin. 63 087101(in Chinese) [郑树文, 范广涵, 张涛, 皮辉, 俆开放 2014 物理学报 63 087101]

    [16]

    Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101(in Chinese) [嘉明珍, 王红艳, 陈元正, 马存良, 王辉 2015 物理学报 64 087101]

    [17]

    Zhang J T, Li J, Sheng Y 2014 Chin. Phys. B 23 013103

    [18]

    Zheng S W, He M, Li S T, Zhang Y 2014 Chin. Phys. B 23 087101

    [19]

    Li Z L, An X Y, Cheng X L, Wang X M, Zhang H, Peng L P, Wu W D 2014 Chin. Phys. B 23 037104

    [20]

    Yu Z Q, Xu Z M, Wu X H 2014 Chin. Phys. B 23 107102

    [21]

    Chen P, Li D L, Yi J X, Tang B Y, Peng L M, DingW J 2009 J. Alloys. Compd. 485 672

    [22]

    Tang P Y, Tang B Y, Peng L M, Ding W J 2012 Mater. Chem. Phys. 131 634

    [23]

    Tang P Y, Wu M M, Tang B Y, Wang J W, Peng L M, Ding W J 2011 Trans. Nonferrous Met. Soc. China 21 801

    [24]

    Iikubo S, Matsuda K, Ohtani H 2012 Phys. Rev. B 86 054105

    [25]

    Ma S Y, Liu L M, Wang S Q 2014 J. Mater. Sci. 49 737

    [26]

    Wang W Y, Shang S L, Wang Y Darling K A Kecskes L J, Mathaudhu S N, Hui X D, Liu Z K 2014 J. Alloys. Compd. 586 656

    [27]

    Kimizuka H, Fronzia M, Ogata S 2013 Scripta Mater. 69 594

    [28]

    Tang B Y, Wang N, Yu W Y, Zeng X Q, Ding W J 2008 Acta Mater. 56 3353

    [29]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [30]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [31]

    Kresse G, Furthller J 1996 Comput. Mater. Sci. 6 15

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Padezhnova E M, Melnik E V, Miliyevskiy R A 1982 Russ. Metall. 4 185

    [34]

    Zhu Y M , Wayland M , Morton A J, Oh-ishi K, Hono K, Nie J F 2009 Scripta Mater. 60 980

    [35]

    Sahu B R 1997 Mater. Sci. Eng. B 49 74

    [36]

    Yi J X, Tang B Yu, Chen P, Li D L, Peng L M, Ding W J 2011 J. Alloys. Compd. 509 669

    [37]

    Fu C L, Wang X, Ye Y Y, Ho K M 1999 Intermetallics 7 179

    [38]

    Nylén J, García F J, Mosel B D, Pöttgen R, Häussermann U 2004 Solid State Sci 6 147

  • [1]

    Saal James E, Wolverton C 2014 Acta Mater. 68 325

    [2]

    Duan P P, Xing H, Chen Z, Hao G H, Wang B H, Jin K X 2015 Acta Phys. Sin. 64 060201(in Chinese) [段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新 2015 物理学报 64 060201]

    [3]

    Rosalie J M, Somekawa H, Singh A, Mukai T 2013 J. Alloys. Compd. 550 114

    [4]

    Shin D, Wolverton C 2010 Scripta Mater. 63 680

    [5]

    Zhang Q, Fu L, Fan T W, Tang B Y, Peng L M, Ding W J 2013 Physica B 416 39

    [6]

    Tane M, Nagai Y, Kimizuka H, Hagihara K, Kawamura Y 2013 Acta Mater. 61 6338

    [7]

    Wu M M, Jiang Y, Wang J W, Wu J, Tang B Y, Peng L M, Ding W J 2011 J. Alloys Compd 509 2885

    [8]

    Kawamura Y, Hayashi K, Inoue A, Masumoto T 2001 Mater. Trans. 42 1172

    [9]

    Abe E, Kawamura Y, Hayashi K, Inoue A 2002 Acta Mater. 50 3845

    [10]

    Luo Z P, Zhang S Q 2000 J. Mater. Sci. Lett. 19 813

    [11]

    Matsuda M, Ii S, Kawamura Y, IkuharaY, Nishida M 2005 Mater. Sci. Eng. A 393 269

    [12]

    Gröbner J, Kozlov A, Fang X Y, Geng J, Nie J F, Schmid-Fetzer R 2012 Acta Mater. 60 5948

    [13]

    Sahlberg M, Andersson Y 2007 J. Alloys. Compd. 446 134

    [14]

    Zhu Y M, Morton A J, Nie J F 2010 Acta Mater. 58 2936

    [15]

    Zheng S W, Fan G H, Zhang T, Pi H, Xu K F 2014 Acta Phys. Sin. 63 087101(in Chinese) [郑树文, 范广涵, 张涛, 皮辉, 俆开放 2014 物理学报 63 087101]

    [16]

    Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101(in Chinese) [嘉明珍, 王红艳, 陈元正, 马存良, 王辉 2015 物理学报 64 087101]

    [17]

    Zhang J T, Li J, Sheng Y 2014 Chin. Phys. B 23 013103

    [18]

    Zheng S W, He M, Li S T, Zhang Y 2014 Chin. Phys. B 23 087101

    [19]

    Li Z L, An X Y, Cheng X L, Wang X M, Zhang H, Peng L P, Wu W D 2014 Chin. Phys. B 23 037104

    [20]

    Yu Z Q, Xu Z M, Wu X H 2014 Chin. Phys. B 23 107102

    [21]

    Chen P, Li D L, Yi J X, Tang B Y, Peng L M, DingW J 2009 J. Alloys. Compd. 485 672

    [22]

    Tang P Y, Tang B Y, Peng L M, Ding W J 2012 Mater. Chem. Phys. 131 634

    [23]

    Tang P Y, Wu M M, Tang B Y, Wang J W, Peng L M, Ding W J 2011 Trans. Nonferrous Met. Soc. China 21 801

    [24]

    Iikubo S, Matsuda K, Ohtani H 2012 Phys. Rev. B 86 054105

    [25]

    Ma S Y, Liu L M, Wang S Q 2014 J. Mater. Sci. 49 737

    [26]

    Wang W Y, Shang S L, Wang Y Darling K A Kecskes L J, Mathaudhu S N, Hui X D, Liu Z K 2014 J. Alloys. Compd. 586 656

    [27]

    Kimizuka H, Fronzia M, Ogata S 2013 Scripta Mater. 69 594

    [28]

    Tang B Y, Wang N, Yu W Y, Zeng X Q, Ding W J 2008 Acta Mater. 56 3353

    [29]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [30]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [31]

    Kresse G, Furthller J 1996 Comput. Mater. Sci. 6 15

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Padezhnova E M, Melnik E V, Miliyevskiy R A 1982 Russ. Metall. 4 185

    [34]

    Zhu Y M , Wayland M , Morton A J, Oh-ishi K, Hono K, Nie J F 2009 Scripta Mater. 60 980

    [35]

    Sahu B R 1997 Mater. Sci. Eng. B 49 74

    [36]

    Yi J X, Tang B Yu, Chen P, Li D L, Peng L M, Ding W J 2011 J. Alloys. Compd. 509 669

    [37]

    Fu C L, Wang X, Ye Y Y, Ho K M 1999 Intermetallics 7 179

    [38]

    Nylén J, García F J, Mosel B D, Pöttgen R, Häussermann U 2004 Solid State Sci 6 147

  • [1] Zhou Jin-Ping, Li Chun-Mei, Jiang Bo, Huang Ren-Zhong. First-principles study of Co and Ni excess effects on crystal structure and phase stability of Co2NiGa alloy. Acta Physica Sinica, 2023, 72(15): 156301. doi: 10.7498/aps.72.20230626
    [2] Yang Shun-Jie, Li Chun-Mei, Zhou Jin-Ping. First-principles study of magnetic disordering and alloying effects on phase stability and elastic constants of Co2CrZ (Z = Ga, Si, Ge) alloys. Acta Physica Sinica, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [3] Zhang Shuo-Xin, Liu Shi-Yu, Yan Da-Li, Yu Qian, Ren Hai-Tao, Yu Bin, Li De-Jun. First-principles study of structural stability and mechanical properties of Ta1–xHfxC and Ta1–xZrxC solid solutions. Acta Physica Sinica, 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [4] Lin Hong-Bin, Lin Chun, Chen Yue, Zhong Ke-Hua, Zhang Jian-Min, Xu Gui-Gui, Huang Zhi-Gao. First-principles study of effect of Mg doping on structural stability and electronic structure of LiCoO2 cathode material. Acta Physica Sinica, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [5] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [6] Ma Zhen-Ning, Zhou Quan, Wang Qing-Jie, Wang Xun, Wang Lei. First-principles study of the thermodynamic stabilities and electronic structures of long-period stacking ordered phases in Mg-Y-Cu alloys. Acta Physica Sinica, 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [7] Wan Ming-Jun, Li Chun-Fu, Wen Ping, Zhang Feng-Chun, Wang Yao, Liu En-Zuo. The bond characters and phase stability effects of Cr Mo and Ni in bulk -Fe(C. Acta Physica Sinica, 2016, 65(3): 037101. doi: 10.7498/aps.65.037101
    [8] Shen Jie, Wei Bin, Zhou Jing, Shen Shirley Zhiqi, Xue Guang-Jie, Liu Han-Xing, Chen Wen. First-principle study of electronic structure and optical properties of Ba(Mg1/3Nb2/3)O3. Acta Physica Sinica, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [9] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study of the electronic structures and absorption spectrum of Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [10] Yang Jian-Hui, Chen Yan-Xing, Wu Li-Hui, Wei Shi-Hao. First-principles study on stability and electronic properties of MC and Mn+1ACn phases. Acta Physica Sinica, 2014, 63(23): 237301. doi: 10.7498/aps.63.237301
    [11] Guan Dong-Bo, Mao Jian. First principles study of the electronic structure and optical properties of Magnli phase titanium suboxides Ti8O15. Acta Physica Sinica, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [12] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [13] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhao Chun-Wang, Zhang Bing. First-principles study on the electronic structures and absorption spectra of Sm-N codoped anatase TiO2. Acta Physica Sinica, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [14] Zheng Shu-Wen, Fan Guang-Han, Li Shu-Ti, Zhang Tao, Su Chen. Energy band properties and phase stability of Be1-xMgxO alloy. Acta Physica Sinica, 2012, 61(23): 237101. doi: 10.7498/aps.61.237101
    [15] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [16] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [17] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [18] Luo Li-Jin, Zhong Chong-Gui, Jiang Xue-Fan, Fang Jing-Huai, Jiang Qing. A first-principles study of electronic structure, magnetism, response to pressure and tetragonal distortions of Ni2MnSi Heusler alloy. Acta Physica Sinica, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [19] Zhu Jian-Xin, Li Yong-Hua, Meng Fan-Ling, Liu Chang-Sheng, Zheng Wei-Tao, Wang Yu-Ming. A first principles investigation on NiTi alloy. Acta Physica Sinica, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [20] Liu Na-Na, Song Ren-Bo, Sun Han-Ying, Du Da-Wei. The electronic structure and thermodynamic properties of Mg2Sn from first-principles calculations. Acta Physica Sinica, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
Metrics
  • Abstract views:  5931
  • PDF Downloads:  403
  • Cited By: 0
Publishing process
  • Received Date:  06 March 2015
  • Accepted Date:  23 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回