Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Polarization properties of wurtzite structure Zn1-xMgxO and band offset at Zn0.75Mg0.25O/ZnO interfaces: A GGA+U investigation

Wu Kong-Ping Qi Jian Peng Bo Tang Kun Ye Jian-Dong Zhu Shun-Ming Gu Shu-Lin

Citation:

Polarization properties of wurtzite structure Zn1-xMgxO and band offset at Zn0.75Mg0.25O/ZnO interfaces: A GGA+U investigation

Wu Kong-Ping, Qi Jian, Peng Bo, Tang Kun, Ye Jian-Dong, Zhu Shun-Ming, Gu Shu-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Two-dimensional (2D) electron gas with high-mobility is found in wurtzite ZnO/Zn(Mg)O heterostructure, which probably arises from the polarization discontinuity at the ZnO/Zn(Mg)O interface, and the 2D electron gas in the heterostructure is usually also regarded as resulting from polarization-induced charge. In order to explore both the formation mechanism and the origin of the 2D electron gas in ZnMgO/ZnO heterostructure, it is necessary to study the polarization properties of Zn1-xMgxO alloy and energy band alignment of ZnO/Zn1-xMgxO super-lattice. In this paper, we study the polarization properties of Zn1-xMgxO alloy with different Mg compositions by using first-principles calculations with GGA+U method, and the polarization properties are calculated according to Berry-phase method. Owing to the excellent match between the in-plane lattice constants of ZnO and Zn1-xMgxO, the lattice constants of the ZnO and Zn1-xMgxO interface are similar, ZnO/Zn1-xMgxO super-lattice could be constructed easily. The planar-averaged electrostatic potential for the Mg0.25Zn0.75O/ZnO super-lattice and the macroscopically averaged potential along Z(0001) direction are calculated. The large size of (5+3) Mg0.25Zn0.75O/ZnO super-lattice ensures the convergence of potential to its bulk value in the region of the ZnO layer and Mg0.25Zn0.75O layer far from ZnO/Zn1-xMgxO interface. Besides, the valence band offset at the Mg0.25Zn0.75O/ZnO interface is calculated to be 0.26~eV based on the macroscopically averaged potential mentioned above, and the ratio of conduction band offset (EC) to valence band offset (EV) is in a reasonable range, and this is in substantial agreement with the values reported in recent experimental results. Because strain induces additional piezoelectric polarization in MgxZn1-xO, which is introduced by Mg dopant, the lack of inversion symmetry and the bulk ZnO induce its spontaneous polarization in the [0001] direction. The polarization discontinuity at the Mg0.25Zn0.75O/ZnO interface leads to the charge accumulation in the form of interface monopoles, giving rise to built-in electric fields in the super-lattice. In addition, energy alignment determination of the Mg0.25Zn0.75O/ZnO super-lattice is performed, which shows a type-I band alignment with EV=0.26 eV and EC=0.33 eV. The determination of the band alignment indicates that the Mg0.25Zn0.75O/ZnO super-lattice is competent to the confining of both electron and hole. These findings will be useful for designing and optimizing the 2D electron gas at Mg0.25Zn0.75O/ZnO interface, which can be regarded as an important reference for studying the 2D electron gas at MgxZn1-xO/ZnO super-lattices for electronics and optoelectronics applications.
      Corresponding author: Wu Kong-Ping, kpwu@aust.edu.cn;slgu@nju.edu.cn ; Gu Shu-Lin, kpwu@aust.edu.cn;slgu@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274058, 61025020, 61322403), the Natural Science Foundation of Anhui Province of China (Grant No. 1208085QF116) and the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK2011437, BK20130013).
    [1]

    Chakhalian J, Millis A J, Rondinelli J 2012 Nat. Mater. 11 92

    [2]

    Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nat. Mater. 11 103

    [3]

    Ji X, Zhu Y, Chen M M, Su L X, Chen A Q, Gui X C, Xiang R, Tang Z K 2014 Sci. Rep. 4 4185

    [4]

    Tsukazaki A, Ohtomo A, Kita T, Ohno Y, Ohno H, Kawasaki M 2007 Science 315 1388

    [5]

    Tsukazaki A, Akasaka S, Nakahara K, Ohno Y, Ohno H, Maryenko D, Ohtomo A, Kawasaki M 2010 Nat. Mater. 9 889

    [6]

    Han K, Tang N, Ye J D, Duan J X, Liu Y C, Teo K L, Shen B 2012 Appl. Phys. Lett. 100 192105

    [7]

    Chen H, Gu S L, Liu J G, Ye J D, Tang K, Zhu S M, Zheng Y D 2011 Appl. Phys. Lett. 99 211906

    [8]

    Ye J D, Lim S T, Bosman M, Gu S L, Zheng Y D, Tan H H, Jagadish C, Sun X W, Teo K L 2012 Sci. Rep. 2 533

    [9]

    Monroy E, Omnes F, Calle F 2003 Semicond. Sci. Technol. 18 R33

    [10]

    Fan M M, Liu K W, Chen X, Zhang Z Z, Li B H, Zhao H F, Shen D Z 2015 J. Mater. Chem. C 3 313

    [11]

    Zhu Y Z, Chen G D, Ye H, Walsh A, Moon C Y, Wei S H 2008 Phys. Rev. B 77 245209

    [12]

    Wu K P, Jiang J H, Tang K, Gu S L, Ye J D, Zhu S M, Lu K L, Zhou M R, Xu M X, Zhang R, Zheng Y D 2014 J. Magn. Magn. Mater. 355 51

    [13]

    Zhang W, Xue J S, Zhou X W, Zhang Y, Liu Z Y, Zhang J C, Hao Y 2012 Chin. Phys. B 21 077103

    [14]

    Liu N Y, Liu L, Wang L, Yang W, Li D, Li L, Cao W Y, Lu C M, Wan C H, Chen W H, Hu X D 2012 Chin. Phys. B 21 017806

    [15]

    Rao X, Wang R Z, Gao J X, Yan H 2015 Acta Phys. Sin. 64 107303(in Chinese) [饶雪, 王如志, 曹觉先, 严辉 2015 物理学报 64 107303]

    [16]

    Niranjan M K, Wang Y, Jaswal S S, Tsymbal E Y 2009 Phys. Rev. Lett. 103 016804

    [17]

    Wang Y, Niranjan M K, Janicka K, Velev J P, Zhuravlev M Y, Jaswal S S, Tsymbal E Y 2010 Phys. Rev. B 82 094114

    [18]

    Wei S, Zunger A 1998 Appl. Phys. Lett. 72 2011

    [19]

    Gruber T, Kirchner C, Kling R, Reuss F, Waag A 2004 Appl. Phys. Lett. 84 5359

    [20]

    Park S, Ahn D 2005 Appl. Phys. Lett. 87 253509

    [21]

    Rao G, Sauberlich F, Klein A 2005 Appl. Phys. Lett. 87 032101

    [22]

    Olson D C, Shaheen S E, White M S, Mitchell W J, van Hest M F A M, Collins R T, Ginley D S 2007 Adv. Funct. Mater. 17 264

    [23]

    Ohtomo A, Kawasaki M, Ohkubo I, Koinuma H, Yasuda T, Segawa Y 1999 Appl. Phys. Lett. 75 980

    [24]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 75 121201

    [25]

    Coli G, Bajaj K 2001 Appl. Phys. Lett. 78 2861

    [26]

    Su S C, Lu Y M, Zhang Z Z, Shan C X, Li B H, Shen D Z, Yao B, Zhang J Y, Zhao D X, Fan X W 2008 Appl. Phys. Lett. 93 082108

    [27]

    Wu X, Vanderbilt D, Hamann D R 2005 Phys. Rev. B 72 035105

    [28]

    Bretagnon T, Lefebvre P, Guillet T, Taliercio T, Gil B, Morhain C 2007 Appl. Phys. Lett. 90 201912

    [29]

    Morhain C, Bretagnon T, Lefebvre P, Tang X, Valvin P, Guillet T, Gil B, Taliercio T, Teisseire D M, Vinter B, Deparis C 2005 Phys. Rev. B 72 241305

    [30]

    van de Valle C G, Martin R M 1987 Phys. Rev. B 35 8154

    [31]

    Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T, Segawa Y 1998 Appl. Phys. Lett. 72 2466

  • [1]

    Chakhalian J, Millis A J, Rondinelli J 2012 Nat. Mater. 11 92

    [2]

    Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nat. Mater. 11 103

    [3]

    Ji X, Zhu Y, Chen M M, Su L X, Chen A Q, Gui X C, Xiang R, Tang Z K 2014 Sci. Rep. 4 4185

    [4]

    Tsukazaki A, Ohtomo A, Kita T, Ohno Y, Ohno H, Kawasaki M 2007 Science 315 1388

    [5]

    Tsukazaki A, Akasaka S, Nakahara K, Ohno Y, Ohno H, Maryenko D, Ohtomo A, Kawasaki M 2010 Nat. Mater. 9 889

    [6]

    Han K, Tang N, Ye J D, Duan J X, Liu Y C, Teo K L, Shen B 2012 Appl. Phys. Lett. 100 192105

    [7]

    Chen H, Gu S L, Liu J G, Ye J D, Tang K, Zhu S M, Zheng Y D 2011 Appl. Phys. Lett. 99 211906

    [8]

    Ye J D, Lim S T, Bosman M, Gu S L, Zheng Y D, Tan H H, Jagadish C, Sun X W, Teo K L 2012 Sci. Rep. 2 533

    [9]

    Monroy E, Omnes F, Calle F 2003 Semicond. Sci. Technol. 18 R33

    [10]

    Fan M M, Liu K W, Chen X, Zhang Z Z, Li B H, Zhao H F, Shen D Z 2015 J. Mater. Chem. C 3 313

    [11]

    Zhu Y Z, Chen G D, Ye H, Walsh A, Moon C Y, Wei S H 2008 Phys. Rev. B 77 245209

    [12]

    Wu K P, Jiang J H, Tang K, Gu S L, Ye J D, Zhu S M, Lu K L, Zhou M R, Xu M X, Zhang R, Zheng Y D 2014 J. Magn. Magn. Mater. 355 51

    [13]

    Zhang W, Xue J S, Zhou X W, Zhang Y, Liu Z Y, Zhang J C, Hao Y 2012 Chin. Phys. B 21 077103

    [14]

    Liu N Y, Liu L, Wang L, Yang W, Li D, Li L, Cao W Y, Lu C M, Wan C H, Chen W H, Hu X D 2012 Chin. Phys. B 21 017806

    [15]

    Rao X, Wang R Z, Gao J X, Yan H 2015 Acta Phys. Sin. 64 107303(in Chinese) [饶雪, 王如志, 曹觉先, 严辉 2015 物理学报 64 107303]

    [16]

    Niranjan M K, Wang Y, Jaswal S S, Tsymbal E Y 2009 Phys. Rev. Lett. 103 016804

    [17]

    Wang Y, Niranjan M K, Janicka K, Velev J P, Zhuravlev M Y, Jaswal S S, Tsymbal E Y 2010 Phys. Rev. B 82 094114

    [18]

    Wei S, Zunger A 1998 Appl. Phys. Lett. 72 2011

    [19]

    Gruber T, Kirchner C, Kling R, Reuss F, Waag A 2004 Appl. Phys. Lett. 84 5359

    [20]

    Park S, Ahn D 2005 Appl. Phys. Lett. 87 253509

    [21]

    Rao G, Sauberlich F, Klein A 2005 Appl. Phys. Lett. 87 032101

    [22]

    Olson D C, Shaheen S E, White M S, Mitchell W J, van Hest M F A M, Collins R T, Ginley D S 2007 Adv. Funct. Mater. 17 264

    [23]

    Ohtomo A, Kawasaki M, Ohkubo I, Koinuma H, Yasuda T, Segawa Y 1999 Appl. Phys. Lett. 75 980

    [24]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 75 121201

    [25]

    Coli G, Bajaj K 2001 Appl. Phys. Lett. 78 2861

    [26]

    Su S C, Lu Y M, Zhang Z Z, Shan C X, Li B H, Shen D Z, Yao B, Zhang J Y, Zhao D X, Fan X W 2008 Appl. Phys. Lett. 93 082108

    [27]

    Wu X, Vanderbilt D, Hamann D R 2005 Phys. Rev. B 72 035105

    [28]

    Bretagnon T, Lefebvre P, Guillet T, Taliercio T, Gil B, Morhain C 2007 Appl. Phys. Lett. 90 201912

    [29]

    Morhain C, Bretagnon T, Lefebvre P, Tang X, Valvin P, Guillet T, Gil B, Taliercio T, Teisseire D M, Vinter B, Deparis C 2005 Phys. Rev. B 72 241305

    [30]

    van de Valle C G, Martin R M 1987 Phys. Rev. B 35 8154

    [31]

    Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T, Segawa Y 1998 Appl. Phys. Lett. 72 2466

  • [1] Zhou Kun, Ma Hao-Yue, Sun Xi-Xian, Wu Xiao-Hu. Active tuning hBN phonon polaritons and spontaneous emission rates based on VO2 and graphene. Acta Physica Sinica, 2023, 72(7): 074201. doi: 10.7498/aps.72.20222167
    [2] Chen Zhong, Hua Lin-Qiang, Zhang Jin, Gong Cheng, Liu Xiao-Jun. Generation of tunable ultraviolet femtosecond pulse in MgO crystal by cascaded four wave mixing. Acta Physica Sinica, 2021, 70(6): 064201. doi: 10.7498/aps.70.20201573
    [3] Jiang Wei, Zhao Huan, Wang Guo-Cui, Wang Xin-Ke, Han Peng, Sun Wen-Feng, Ye Jia-Sheng, Feng Sheng-Fei, Zhang Yan. Birefringence characteristics of magnesium oxide crystal in terahertz frequency region by using terahertz focal plane imaging. Acta Physica Sinica, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [4] Li Yan, Zhang Lin-Bin, Li Jiao, Lian Xiao-Xue, Zhu Jun-Wu. Crystallization characteristics of zinc oxide under electric field and Raman spectrum analysis of polarized products. Acta Physica Sinica, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [5] Li Yan, Li Jiao, Chen Li-Li, Lian Xiao-Xue, Zhu Jun-Wu. Polarization effect of external electric field on Raman activity and gas sensing of nano zinc oxide. Acta Physica Sinica, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [6] Wu Kong-Ping, Sun Chang-Xu, Ma Wen-Fei, Wang Jie, Wei Wei, Cai Jun, Chen Chang-Zhao, Ren Bin, Sang Li-Wen, Liao Mei-Yong. Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation. Acta Physica Sinica, 2017, 66(8): 088102. doi: 10.7498/aps.66.088102
    [7] Xiao Xiao-Hong, Li Shi-Chun. The chemical bond properties and ferroelectricity studies of SrBi4Ti4O15. Acta Physica Sinica, 2016, 65(6): 063101. doi: 10.7498/aps.65.063101
    [8] Fan Wei, Zeng Zhi. Magnetism of MgO nanoparticles. Acta Physica Sinica, 2014, 63(4): 047503. doi: 10.7498/aps.63.047503
    [9] Niu Hai-Bo, Chen Guang-De, Wu Ye-Long, Ye Hong-Gang. Influence of vacancy on spontaneous polarization of wurtzite AlN: a maximally localized Wannierfunction study. Acta Physica Sinica, 2014, 63(16): 167701. doi: 10.7498/aps.63.167701
    [10] Ma Ming-Lei, Wu Jian, Yang Mu, Ning Yong-Qiang, Shang Guang-Yi. Experimental characterization of polarization gain properties of 808nm semiconductor laser and analysis of energy band based on amplified spontaneous emissions from double facets. Acta Physica Sinica, 2013, 62(17): 174209. doi: 10.7498/aps.62.174209
    [11] Chen Liang, Xu Can, Zhang Xiao-Fang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [12] Kong Yue-Chan, Zheng You-Dou, Zhou Chun-Hong, Deng Yong-Zhen, Gu Shu-Lin, Shen Bo, Zhang Rong, Han Ping, Jiang Ruo-Lian, Shi Yi. Influence of polarizations and doping in AlGaN barrier on the two-dimensional electron-gas in AlGaN/GaN heterostruture. Acta Physica Sinica, 2004, 53(7): 2320-2324. doi: 10.7498/aps.53.2320
    [13] Chen San, Xie Shang-Yuan, Yang Ya-Ping, Chen Hong. Spontaneous emission from a two-level atom embedded in two-band three-dimensional photonic crystals. Acta Physica Sinica, 2003, 52(4): 853-858. doi: 10.7498/aps.52.853
    [14] Kong Yue-Chan, Zheng You-Dou, Chu Rong-Ming, Gu Shu-Lin. Influnce of Al-content on the property of the two-dimensional electron gases in AlxGa1-xN/GaN heterostructures. Acta Physica Sinica, 2003, 52(7): 1756-1760. doi: 10.7498/aps.52.1756
    [15] Luo You-Hua, Huang Zheng, Wang Yu-Zhu. . Acta Physica Sinica, 2002, 51(8): 1706-1710. doi: 10.7498/aps.51.1706
    [16] QIAN XIANG-ZHONG. STATISTICAL THEORY OF SPONTANEOUS POLARIZATION IN SmC* LIQUID CRYSTALS. Acta Physica Sinica, 1997, 46(9): 1788-1795. doi: 10.7498/aps.46.1788
    [17] LI FU-BIN. THEORY OF THE BAND NONPARABOLICITY EFFECTS ON FR?HLICH POLARONS. Acta Physica Sinica, 1991, 40(4): 610-615. doi: 10.7498/aps.40.610
    [18] LI YAN-MIN, K. A. CHAO. ENERGY BANDS, STABILITY AND THERMODYNAMIC PROPERTIES OF BIPOLARONS. Acta Physica Sinica, 1984, 33(2): 273-276. doi: 10.7498/aps.33.273
    [19] PU FU-CHO, WANG DING-SHENG. THE MEAN FIELD THEORY FOR SPONTANEOUS MAGNETIZATION OF A NON-UNIFORM FERROMAGNET. Acta Physica Sinica, 1978, 27(4): 439-447. doi: 10.7498/aps.27.439
    [20] LEE JING-DER. ELECTRONIC SPONTANEOUS POLARIZATION OF O-2 IN THE ABO3-TYPE CRYSTALS. Acta Physica Sinica, 1966, 22(2): 188-196. doi: 10.7498/aps.22.188
Metrics
  • Abstract views:  5180
  • PDF Downloads:  434
  • Cited By: 0
Publishing process
  • Received Date:  08 March 2015
  • Accepted Date:  21 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回