Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Acoustic charge transport behaviors of sulfur-doped wide gap Ga2Te3-based semiconductors

Liu Hai-Yun Liu Xiang-Lian Tian Ding-Qi Du Zheng-Liang Cui Jiao-Lin

Citation:

Acoustic charge transport behaviors of sulfur-doped wide gap Ga2Te3-based semiconductors

Liu Hai-Yun, Liu Xiang-Lian, Tian Ding-Qi, Du Zheng-Liang, Cui Jiao-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Wide gap semiconductors as the thermoelectric (TE) candidates have been increasingly interested because of their inherent high Seebeck coefficients and low thermal conductivities. Ga2Te3 is one of the typical defect compounds (Eg=1.65 eV) among the A2IIIB3VI type semiconductors, in which there are periodically self-assembled 2D vacancy planes that wrap the nanostructured domains. The vacancy planes scatter phonons highly effectively and are responsible for reducing the lattice thermal conductivity. Hence Ga2Te3 might be a good TE candidate. In the phase diagram of Ga-Te, Ga2Te3 is involved in the eutectoid and peritectic reactions at the critical temperatures (CTs) of 680 10 K and 757 10 K respectively. These reactions would lead to the generation of enthalpies of reactions, and induce the alteration of some thermo-physical properties. In the present work, we have not observed the phase transformations at CTs in the Ga2Te3-based materials with sulfur isoelectronic substitution for Te, which are prepared by powder metallurgy with the spark plasma sintering (SPS) technique, but can observe the generation of assumed enthalpies of reactions near CTs, which directly gives rise to the critical acoustic charge transport behaviors. The critical behaviors involve the remarkable increase of heat capacities and Seebeck coefficients and, at the same time, reductions of thermal diffusivities (thermal conductivities) and electrical conductivities. For example, the Seebeck coefficient () at x=0.05 increases rapidly from 376.3(VK-1) to 608.2(VK-1) when the temperature rises from 596 to 695 K, and then decreases to 213.8(VK-1) at 764 K. Similarly, all the S-doped samples, which have lowest electrical conductivities ( ) of 2.12102 (x=0.05), 0.25102 (x=0.1), 0.12102 -1m-1 (x=0.2) and 0.14102 -1m-1 (x=0.3) at 696725 K, undergo dramatic changes when the temperature rises to about 750 K, and then the electrical conductivities begin to decrease, and the changes tend to slow down. It is notable that both the Seebeck coefficients and electrical conductivities exhibit a typical zigzag temperature dependence in the temperature range from 596 to 812 K. These behaviors reveal the remarkable alterations in scattering mechanism of both phonons and carriers at temperatures near the CTs. Although the materials with these critical behaviors near CTs do not have satisfactory thermoelectric performance (ZTmax=0.17 at 793 K for x=0.3) as compared with the known binary Cu2Se, Ag2Se(S) or ternary based AgCrSe2 alloys, however, the findings of such critical transport behaviors have a great significance for future researches.
      Corresponding author: Cui Jiao-Lin, cuijiaolin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51171084), the Zhejiang Provincial Natural Science Foundation (Grant No. LY14E010003), and the Ningbo Natural Science Foundation (Grant No. 2014 A610016).
    [1]

    Guizzetti G, Meloni F 1982 Luglio-Agosto 1D 503

    [2]

    Guymont M, Tomas A, Guittard M 1992 Philos. Mag. 66 133

    [3]

    Finkman E, Tauc J, Kershaw R, Wold A 1975 Phys. Rev. B 11 3785

    [4]

    Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101

    [5]

    Cui J L, Gao Y L, Zhou H, Li Y P, Meng Q S, Yang J F 2012 Appl. Phys. Lett. 101 081908

    [6]

    Fu H, Ying P Z, Cui J L, Yan Y M, Zhang X J 2011 Rare Metal Mater. Eng. 40 849 (in Chinese) [付红, 应鹏展, 崔教林, 颜艳明, 张晓军 2011 稀有金属材料与工程 40 849]

    [7]

    Tian D, Liu H, Deng Y, Du Z, Cui J L 2014 RSC Adv. 4 34104

    [8]

    Wuyts K, Watte J, Langouche G, Silverans R E, G. Zgb, Jumas J C 1992 J. Appl. Phys. 71 744

    [9]

    Wang Z, Li H, Su X, Tang X 2011 Acta Phys. Sin. 60 027202(in Chinses) [王作成, 李涵, 苏贤礼, 唐新峰 2011 物理学报 60 027202]

    [10]

    Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201(in Chinses) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 物理学报 61 047201]

    [11]

    Liu H, Yuan X, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi X, Uher, C 2013 Adv. Mater. 25 6607

    [12]

    Xiao C, Xu J, Li K 2012 J. Am. Chem. Soc. 134 4287

    [13]

    Capps J, Drymiotis F, Lindsey S, Tritt T M 2010 Philos. Mag. Lett. 90 677

    [14]

    Wu C, Feng F, Feng J, Dai J, Peng L, Zhao J, Yang J, Si C, Wu Z, Xie Y 2011 J. Am. Chem. Soc. 133 13798

    [15]

    Wang Q, Qin X 2012 Proc. Eng. 27 77

    [16]

    Rao Z H, Wang S F, Zhang Y L, Peng F F, Cai S H 2013 Acta Phys. Sin. 62 056601(in Chinses) [饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒 2012 物理学报 61 056601]

    [17]

    Hu G X, Qian M G 1980 Metallography (Shanghai: Shanghai Scientific and Technical Publishers) p350 (in Chinese) [胡庚祥, 钱苗根 1980 金属学 (上海: 上海科学技术出版社) (上海: 上海科学技术出版社) 第350页]

    [18]

    Gascoin F, Maignan A 2011 Chem. Mater. 23 2510

    [19]

    Gascoin F, Ottensmann S, Stark D, Hale S M, Snyder G J 2005 Adv. Func. Mater. 15 1860

  • [1]

    Guizzetti G, Meloni F 1982 Luglio-Agosto 1D 503

    [2]

    Guymont M, Tomas A, Guittard M 1992 Philos. Mag. 66 133

    [3]

    Finkman E, Tauc J, Kershaw R, Wold A 1975 Phys. Rev. B 11 3785

    [4]

    Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101

    [5]

    Cui J L, Gao Y L, Zhou H, Li Y P, Meng Q S, Yang J F 2012 Appl. Phys. Lett. 101 081908

    [6]

    Fu H, Ying P Z, Cui J L, Yan Y M, Zhang X J 2011 Rare Metal Mater. Eng. 40 849 (in Chinese) [付红, 应鹏展, 崔教林, 颜艳明, 张晓军 2011 稀有金属材料与工程 40 849]

    [7]

    Tian D, Liu H, Deng Y, Du Z, Cui J L 2014 RSC Adv. 4 34104

    [8]

    Wuyts K, Watte J, Langouche G, Silverans R E, G. Zgb, Jumas J C 1992 J. Appl. Phys. 71 744

    [9]

    Wang Z, Li H, Su X, Tang X 2011 Acta Phys. Sin. 60 027202(in Chinses) [王作成, 李涵, 苏贤礼, 唐新峰 2011 物理学报 60 027202]

    [10]

    Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201(in Chinses) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 物理学报 61 047201]

    [11]

    Liu H, Yuan X, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi X, Uher, C 2013 Adv. Mater. 25 6607

    [12]

    Xiao C, Xu J, Li K 2012 J. Am. Chem. Soc. 134 4287

    [13]

    Capps J, Drymiotis F, Lindsey S, Tritt T M 2010 Philos. Mag. Lett. 90 677

    [14]

    Wu C, Feng F, Feng J, Dai J, Peng L, Zhao J, Yang J, Si C, Wu Z, Xie Y 2011 J. Am. Chem. Soc. 133 13798

    [15]

    Wang Q, Qin X 2012 Proc. Eng. 27 77

    [16]

    Rao Z H, Wang S F, Zhang Y L, Peng F F, Cai S H 2013 Acta Phys. Sin. 62 056601(in Chinses) [饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒 2012 物理学报 61 056601]

    [17]

    Hu G X, Qian M G 1980 Metallography (Shanghai: Shanghai Scientific and Technical Publishers) p350 (in Chinese) [胡庚祥, 钱苗根 1980 金属学 (上海: 上海科学技术出版社) (上海: 上海科学技术出版社) 第350页]

    [18]

    Gascoin F, Maignan A 2011 Chem. Mater. 23 2510

    [19]

    Gascoin F, Ottensmann S, Stark D, Hale S M, Snyder G J 2005 Adv. Func. Mater. 15 1860

  • [1] Yuan Min-Hui, Le Wen-Kai, Tan Xiao-Jian, Shuai Jing. Research progress of two-dimensional covalent bond substructure Zintl phase thermoelectric materials. Acta Physica Sinica, 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [2] Huang Qing-Song, Duan Bo, Chen Gang, Ye Ze-Chang, Li Jiang, Li Guo-Dong, Zhai Peng-Cheng. Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials. Acta Physica Sinica, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [3] Zhao Ying-Hao, Zhang Rui, Zhang Bo-Ping, Yin Yang, Wang Ming-Jun, Liang Dou-Dou. Phase structure and thermoelectric properties of Cu1.8–x Sbx S thermoelectric material. Acta Physica Sinica, 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [4] Huang Lu-Lu, Zhang Jian, Kong Yuan, Li Di, Xin Hong-Xing, Qin Xiao-Ying. Optimization of thermoelectric transport performance of nickel-doped CuGaTe2. Acta Physica Sinica, 2021, 70(20): 207101. doi: 10.7498/aps.70.20211165
    [5] Wang Ya-Ning, Chen Shao-Ping, Fan Wen-Hao, Guo Jing-Yun, Wu Yu-Cheng, Wang Wen-Xian. Interface performance of PbTe-based thermoelectric joints. Acta Physica Sinica, 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [6] Guo Jing-Yun, Chen Shao-Ping, Fan Wen-Hao, Wang Ya-Ning, Wu Yu-Cheng. Improving interface properties of Te based thermoelectric materials and composite electrodes. Acta Physica Sinica, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [7] Xie Xiu-Hua, Li Bing-Hui, Zhang Zhen-Zhong, Liu Lei, Liu Ke-Wei, Shan Chong-Xin, Shen De-Zhen. Point defects: key issues for II-oxides wide-bandgap semiconductors development. Acta Physica Sinica, 2019, 68(16): 167802. doi: 10.7498/aps.68.20191043
    [8] Tao Ying, Qi Ning, Wang Bo, Chen Zhi-Quan, Tang Xin-Feng. Microstructure and thermoelectric properties of In2O3/poly(3, 4-ethylenedioxythiophene) composites. Acta Physica Sinica, 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [9] Wang Hong-Xiang, Ying Peng-Zhan, Yang Jiang-Feng, Chen Shao-Ping, Cui Jiao-Lin. Defects and thermoelectric performance of ternary chalcopyrite CuInTe2-based semiconductors doped with Mn. Acta Physica Sinica, 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [10] Xue Li, Ren Yi-Ming. The first-principles study of electrical and thermoelectric properties of CuGaTe2 and CuInTe2. Acta Physica Sinica, 2016, 65(15): 156301. doi: 10.7498/aps.65.156301
    [11] Zhang Yu, Wu Li-Hua, Zengli Jiao-Kai, Liu Ye-Feng, Zhang Ji-Ye, Xing Juan-Juan, Luo Jun. Microstructures and thermoelectric transports in PbSe-MnSe nano-composites. Acta Physica Sinica, 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [12] Liu Yi, Zhang Qing, Li Hai-Jin, Li Yong, Liu Hou-Tong. Temperature dependence of electrical resistivity for Sr-doped perovskite-type oxide Y1-xSrxCoO3 prepared by sol-gel process. Acta Physica Sinica, 2013, 62(4): 047202. doi: 10.7498/aps.62.047202
    [13] Wu Zi-Hua, Xie Hua-Qing, Zeng Qing-Feng. Preparation and thermoelectric properties of Ag-ZnO nanocomposites synthesized by means of sol-gel. Acta Physica Sinica, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [14] Huo Feng-Ping, Wu Rong-Gui, Xu Gui-Ying, Niu Si-Tong. Thermoelectric properties of (AgSbTe2)100-x (GeTe)x fabricated by hot pressing method. Acta Physica Sinica, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [15] Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui, Zhang Fan, Luo Jun. Synthesis and characterization of Sb2Te3 nanostructures. Acta Physica Sinica, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [16] Fan Ping, Zheng Zhuang-Hao, Liang Guang-Xing, Zhang Dong-Ping, Cai Xing-Min. Preparation and characterization of Sb2Te3 thermoelectric thin films by ion beam sputtering. Acta Physica Sinica, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [17] Yan Yong-Gao, Tang Xin-Feng, Liu Hai-Jun, Yin Ling-Ling, Zhang Qing-Jie. Thermoelectric properties of nonstoichiometric Ag1-xPb18SbTe20 materials. Acta Physica Sinica, 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [18] Chen Xiao-Yang, Xu Xiang-Fan, Hu Rong-Xing, Ren Zhi, Xu Zhu-An, Cao Guang-Han. Synthesis and thermopower measurement of LixNayCoO2. Acta Physica Sinica, 2007, 56(3): 1627-1631. doi: 10.7498/aps.56.1627
    [19] Liu Wei-Shu, Zhang Bo-Ping, Li Jing-Feng, Liu Jing. Thermodynamic explanation of solid-state reactions in synthesis process of CoSb3 via mechanical alloying. Acta Physica Sinica, 2006, 55(1): 465-471. doi: 10.7498/aps.55.465
    [20] Lü Qiang, Rong Jian-Ying, Zhao Lei, Zhang Hong-Chen, Hu Jian-Min, Xin Jiang-Bo. Influence of process parameters on the electrical properties of n-type and p-type Bi2Te3-based pseudo-ternary thermoelectric materials by the hot-pressing method. Acta Physica Sinica, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
Metrics
  • Abstract views:  5203
  • PDF Downloads:  223
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2015
  • Accepted Date:  02 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回