Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Angular dependence of proton single event multiple-cell upsets in nanometer SRAM

Luo Yin-Hong Zhang Feng-Qi Guo Hong-Xia Guo Xiao-Qiang Zhao Wen Ding Li-Li Wang Yuan-Ming

Citation:

Angular dependence of proton single event multiple-cell upsets in nanometer SRAM

Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Guo Xiao-Qiang, Zhao Wen, Ding Li-Li, Wang Yuan-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Single event multiple-cell upsets (MCU) increase sharply as the feature size of semiconductor devices shrinks. MCU poses a large challenge on present radiation hardening technology and modeling test technique. Experimental study of the influence of proton incidence angle on single event multiple-cell upsets in 90 nm static random access memory (SRAM) for middle and high energy proton is carried out. The result shows that MCU percentage and multiplicity increase with increasing proton energy, and the MCU topological pattern presents a certain track-orientation characteristic along the trajectories of the incidence ion when the incidence proton is tilted along the X-direction or Y-direction. Single event upset (SEU) cross section has no evident angular dependence. There is some difference in proton MCU cross section between normal incidence and tilt angle incidence only for 30 MeV proton. Angular effect of proton MCU is associated with proton energy. Due to the lower efficiency of Monte-Carlo method in calculating proton MCU, a fast calculation method for cross section, which aims at single event MCU induced by proton nuclear reaction, is adopted. The binary cascade model in Geant4 toolkit serves as event generators in middle on high proton nuclear reaction. In terms of double differential scattering cross section of secondary particle from proton-material spallation reaction, proton MCU cross section is calculated through integration over the entire space of memory cells array. Based on the distribution of secondary particles, those spallation products with the highest linear energy transfer (LET) and longest range are revealed to emit preferentially in the forward direction, which is the root cause why the angular effect of proton-induced MCU exists. The angular dependence of single event MCU in nanometer SRAM depends strongly on proton energy and critical charge. The higher the proton energy is, the wider the angular distribution of secondary particle is, the greater the energy and LET value of the lateral scattered secondary particle is; and so the angular enhancement effect in MCU cross section for lower energy protons is greater than the higher energy protons. MCU cross section is more isotropic with the increase of the proton energy. Angular effect in MCU cross section becomes stronger with the increase of the critical charge for the same energy proton.
      Corresponding author: Luo Yin-Hong, luoyinhong@nint.ac.cn
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2014ZX01022-301).
    [1]

    Giot D, Roche P, Gasiot G, Harboe-Sorensen R 2007 IEEE Trans. Nucl. Sci. 54 904

    [2]

    Correas V, Saigné F, Sagnes B, Wrobel F, Boch J, Gasiot G, Roche P 2009 IEEE Trans. Nucl. Sci. 65 2050

    [3]

    Lawrence R K, Kelly A T 2008 IEEE Trans. Nucl. Sci. 55 3367

    [4]

    Giot D, Roche P, Gasiot G, Autran J L, Harboe-Sorensen R 2008 IEEE Trans. Nucl. Sci. 55 2048

    [5]

    Tipon A D, Pellish J A, Hutson J M, Baumann R, Deng X, Marshall A, Xapsos M A, Kim H S, Friendlich M R, Campola M J, Seidleck C M, Label K A, Mendenhall M H, Reed R A, Schrimpf R D, Weller R A, Black J D 2008 IEEE Trans. Nucl. Sci. 56 2880

    [6]

    Space Component Coordination Group 1995 ESA/SCC Basic Specification NO. 25100

    [7]

    Koga R, Kolaskinski W A, Osborn J V, Elder J H, Chitty R 1988 IEEE Trans. Nucl. Sci. 35 1638

    [8]

    Reed R A, Marshall P W, Kim Hak S, McNulty P J, Fodness B, Jordan T M, Reedy R, Tabbert C, Liu M S T, Heikkila W, Buchner S, Ladbury R, LaBel K A 2002 IEEE Trans. Nucl. Sci. 49 3038

    [9]

    Buchner S, Campbell A, Reed R, Fodness B, Kuboyama S 2004 IEEE Trans. Nucl. Sci. 51 3270

    [10]

    Ikedade N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200

    [11]

    He C H, Yang H L, Geng B, Chen X H, Li G Z, Liu E K, Luo J S 2000 Nuclear Electronics & Detection Technology. 20 253 (in Chinese) [贺朝会, 杨海亮, 耿斌, 陈晓华, 李国政, 刘恩科, 罗晋生 2000 核电子学与探测技术 20 253]

    [12]

    He C H, Chen X H, Li G Z 2002 Chinese Journal of Computation Physics 19 367 (in Chinese) [贺朝会, 陈晓华, 李国政 2002 计算物理 19 367]

    [13]

    Wang Y M, Chen W, Guo H X, He B P, Luo Y H, Yao Z B, Zhang F Q, Zhang K Y, Zhao W 2010 Atomic Energy Science and Technology 44 1505 (in Chinese) [王园明, 陈伟, 郭红霞, 何宝平, 罗尹虹, 姚志斌, 张凤祁, 张科营, 赵雯 2010 原子能科学技术 44 1505]

    [14]

    Wang T Q 2003 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [王同权 2003 博士学位论文(长沙: 国防科学技术大学)]

    [15]

    Folger G, Ivanchenko V, Wellisch J 2004 The European Physical Journal A-Hadrons and Nuclei 21 407

    [16]

    Clemens M A 2012 Ph. D. Dissertation(Nashville: Vanderbilt University)

    [17]

    Warren K M, Weller R A, Sierawski B D 2007 IEEE Trans. Nucl. Sci. 54 898

    [18]

    Artola L, Velazco R, Hubert G, Duzellier S, Nuns T, Guerard B, Peronnard P, Mansour W, Pancher F, Bezerra F 2011 IEEE Trans. Nucl. Sci. 58 2644

  • [1]

    Giot D, Roche P, Gasiot G, Harboe-Sorensen R 2007 IEEE Trans. Nucl. Sci. 54 904

    [2]

    Correas V, Saigné F, Sagnes B, Wrobel F, Boch J, Gasiot G, Roche P 2009 IEEE Trans. Nucl. Sci. 65 2050

    [3]

    Lawrence R K, Kelly A T 2008 IEEE Trans. Nucl. Sci. 55 3367

    [4]

    Giot D, Roche P, Gasiot G, Autran J L, Harboe-Sorensen R 2008 IEEE Trans. Nucl. Sci. 55 2048

    [5]

    Tipon A D, Pellish J A, Hutson J M, Baumann R, Deng X, Marshall A, Xapsos M A, Kim H S, Friendlich M R, Campola M J, Seidleck C M, Label K A, Mendenhall M H, Reed R A, Schrimpf R D, Weller R A, Black J D 2008 IEEE Trans. Nucl. Sci. 56 2880

    [6]

    Space Component Coordination Group 1995 ESA/SCC Basic Specification NO. 25100

    [7]

    Koga R, Kolaskinski W A, Osborn J V, Elder J H, Chitty R 1988 IEEE Trans. Nucl. Sci. 35 1638

    [8]

    Reed R A, Marshall P W, Kim Hak S, McNulty P J, Fodness B, Jordan T M, Reedy R, Tabbert C, Liu M S T, Heikkila W, Buchner S, Ladbury R, LaBel K A 2002 IEEE Trans. Nucl. Sci. 49 3038

    [9]

    Buchner S, Campbell A, Reed R, Fodness B, Kuboyama S 2004 IEEE Trans. Nucl. Sci. 51 3270

    [10]

    Ikedade N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200

    [11]

    He C H, Yang H L, Geng B, Chen X H, Li G Z, Liu E K, Luo J S 2000 Nuclear Electronics & Detection Technology. 20 253 (in Chinese) [贺朝会, 杨海亮, 耿斌, 陈晓华, 李国政, 刘恩科, 罗晋生 2000 核电子学与探测技术 20 253]

    [12]

    He C H, Chen X H, Li G Z 2002 Chinese Journal of Computation Physics 19 367 (in Chinese) [贺朝会, 陈晓华, 李国政 2002 计算物理 19 367]

    [13]

    Wang Y M, Chen W, Guo H X, He B P, Luo Y H, Yao Z B, Zhang F Q, Zhang K Y, Zhao W 2010 Atomic Energy Science and Technology 44 1505 (in Chinese) [王园明, 陈伟, 郭红霞, 何宝平, 罗尹虹, 姚志斌, 张凤祁, 张科营, 赵雯 2010 原子能科学技术 44 1505]

    [14]

    Wang T Q 2003 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [王同权 2003 博士学位论文(长沙: 国防科学技术大学)]

    [15]

    Folger G, Ivanchenko V, Wellisch J 2004 The European Physical Journal A-Hadrons and Nuclei 21 407

    [16]

    Clemens M A 2012 Ph. D. Dissertation(Nashville: Vanderbilt University)

    [17]

    Warren K M, Weller R A, Sierawski B D 2007 IEEE Trans. Nucl. Sci. 54 898

    [18]

    Artola L, Velazco R, Hubert G, Duzellier S, Nuns T, Guerard B, Peronnard P, Mansour W, Pancher F, Bezerra F 2011 IEEE Trans. Nucl. Sci. 58 2644

  • [1] He Huan, Bai Yu-Rong, Tian Shang, Liu Fang, Zang Hang, Liu Wen-Bo, Li Pei, He Chao-Hui. Simulation of displacement damage induced by protons incident on AlxGa1–xN materials. Acta Physica Sinica, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [2] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [3] Zhang Zhan-Gang, Ye Bing, Ji Qing-Gang, Guo Jin-Long, Xi Kai, Lei Zhi-Feng, Huang Yun, Peng Chao, He Yu-Juan, Liu Jie, Du Guang-Hua. Mechanisms of alpha particle induced soft errors in nanoscale static random access memories. Acta Physica Sinica, 2020, 69(13): 136103. doi: 10.7498/aps.69.20201796
    [4] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Experimental study on neutron single event effects of commercial SRAMs based on CSNS. Acta Physica Sinica, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [5] Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Wojtek Hajdas. Prediction of proton single event upset sensitivity based on heavy ion test data in nanometer hardened static random access memory. Acta Physica Sinica, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [6] Ju An-An,  Guo Hong-Xia,  Zhang Feng-Qi,  Guo Wei-Xin,  Ouyang Xiao-Ping,  Wei Jia-Nan,  Luo Yin-Hong,  Zhong Xiang-Li,  Li Bo,  Qin Li. Experimental study about single event functional interrupt of ferroelectric random access memory induced by 30-90 MeV proton. Acta Physica Sinica, 2018, 67(23): 237803. doi: 10.7498/aps.67.20181225
    [7] Zhu Bing-Hui, Yang Ai-Xiang, Niu Shu-Tong, Chen Xi-Meng, Zhou Wang Shao, Jian-Xiong. Simulation analyses of 100-keV as well as low and high energy protons through insulating nanocapillary. Acta Physica Sinica, 2018, 67(1): 013401. doi: 10.7498/aps.67.20171701
    [8] Luo Yin-Hong, Zhang Feng-Qi, Wang Yan-Ping, Wang Yuan-Ming, Guo Xiao-Qiang, Guo Hong-Xia. Single event upsets sensitivity of low energy proton in nanometer static random access memory. Acta Physica Sinica, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [9] Zhao Wen, Guo Xiao-Qiang, Chen Wei, Qiu Meng-Tong, Luo Yin-Hong, Wang Zhong-Ming, Guo Hong-Xia. Effects of nuclear reactions between protons and metal interconnect overlayers on single event effects of micro/nano scaled static random access memory. Acta Physica Sinica, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [10] Xiao Yao, Guo Hong-Xia, Zhang Feng-Qi, Zhao Wen, Wang Yan-Ping, Ding Li-Li, Fan Xue, Luo Yin-Hong, Zhang Ke-Ying. Synergistic effects of total ionizing dose on the single event effect sensitivity of static random access memory. Acta Physica Sinica, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [11] Chen Rui, Yu Yong-Tao, Shangguan Shi-Peng, Feng Guo-Qiang, Han Jian-Wei. Mechanism of multiple bit upsets induced by localized latch-up effect in 90 nm complementary metal semiconductor static random-access memory. Acta Physica Sinica, 2014, 63(12): 128501. doi: 10.7498/aps.63.128501
    [12] Zhu Jin-Hui, Wei Yuan, Xie Hong-Gang, Niu Sheng-Li, Huang Liu-Xing. Numerical investigation of non-ionizing energy loss of proton at an energy range of 300 eV to 1 GeV in silicon. Acta Physica Sinica, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [13] Ding Li-Li, Guo Hong-Xia, Chen Wei, Yan Yi-Hua, Xiao Yao, Fan Ru-Yu. Simulation study of the influence of ionizing irradiation on the single event upset vulnerability of static random access memory. Acta Physica Sinica, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [14] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [15] Wang Zu-Jun, Tang Ben-Qi, Xiao Zhi-Gang, Liu Min-Bo, Huang Shao-Yan, Zhang Yong. Experimental analysis of charge transfer efficiency degradation of charge coupled devices induced by proton irradiation. Acta Physica Sinica, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [16] Zhang Ke-Ying, Guo Hong-Xia, Luo Yin-Hong, He Bao-Ping, Yao Zhi-Bin, Zhang Feng-Qi, Wang Yuan-Ming. Three-dimensional numerial simulation of single event upset effects in static random access memory. Acta Physica Sinica, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [17] Li Hua. Monte Carlo simulation of the SRAM single event upset. Acta Physica Sinica, 2006, 55(7): 3540-3545. doi: 10.7498/aps.55.3540
    [18] He Bao-Ping, Chen Wei, Wang Gui-Zhen. A comparison of ionizing radiation damage in CMOS devices from 60Co Gamma rays, electrons and protons. Acta Physica Sinica, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [19] Zhang Qing-Xiang, Hou Ming-Dong, Liu Jie, Wang Zhi-Guang, Jin Yun-Fan, Zhu Zhi-Yong, Sun You-Mei. The dependence of single event upset cross-section on incident angle. Acta Physica Sinica, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
    [20] He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Li Guo-Zheng, Wang Yan-Ping. Mechanism of radiation effects in floating gate ROMs. Acta Physica Sinica, 2003, 52(9): 2235-2238. doi: 10.7498/aps.52.2235
Metrics
  • Abstract views:  4887
  • PDF Downloads:  233
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2015
  • Accepted Date:  10 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回