Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cavitation of two kinds of bubble mixtures

Miao Bo-Ya An Yu

Citation:

Cavitation of two kinds of bubble mixtures

Miao Bo-Ya, An Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • By solving the nonlinear wave equation coupled with the modified Rayleigh-Plesset equation, the characteristics of the acoustic field and bubble motion in cavitation environment can be described. In general, the cavitation cloud consists of many kinds of bubbles with different ambient radii. For simplicity, in this work the cavitation process of the mixture of two kinds of bubbles with different ambient radii is numerically simulated, and the ratio of the mixture is adjustable. Suppose that the cavitation in water contained in a cylindrical container is stimulated by ultrasonic horn. The dissipative absorption of the container wall is taken into account, which plays an important role in forming the stationary standing wave field, otherwise, the beat signal of acoustic pressure will appear which is absent in the observation. Based on the stationary acoustic wave field, for the case of the mixed-bubble cavitation, the interactions between bubbles and acoustic field, bubbles and bubbles, as well as the spectrum of acoustic signal are analyzed. We choose the cases that the ratio of two kinds of bubble species is varying, but the total density of bubble number is fixed to be 1/mm3, and find that those results are very different. For the case that the ambient radii of two bubble species are both a few micron, revealing that the interaction between bubbles and acoustic field is usually weak. As the proportion of bigger bubble increases, the change of the acoustic pressure and the averaged radius of bubble behave regularly; for the case that the ambient radius of one of bubble specie is relatively big, for example, the ambient radius is about a few tens of microns, the interactions between bubbles and acoustic field become stronger, and the nonlinearity is more apparent. We can observe the similar trends from the frequency spectrum. For the bubble of a few microns in size, the base frequency is dominant; in contrast, for the bubble of a few tens of microns in size, the components of harmonic frequencies are far beyond the base frequency component. The interesting phenomenon is that there is the cut off frequency and the cut of frequencies for different mixture of bubbles are almost the same.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11334005) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110031).
    [1]

    Suslick K S 1990 Science 247 1439

    [2]

    Hoff L 1996 Ultrasonics 34 591

    [3]

    Edson P L 2001 Ph.D. Dissertation (Boston:Boston University)

    [4]

    Manickam S, Ashokkumar M 2014 Cavitation: A Novel Energy-Efficient Technique for the Generation of Nanomaterials (Singapore: Pan Standford Publishing Pte. Ltd.) pp1-422

    [5]

    Rayleigh L 1917 Phil. Mag. Lett. 34 94

    [6]

    Plesset M S 1949 ASME J. Appl. Mech. 16 277

    [7]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [8]

    Harkin A, Kaper T J, Nadim A 2001 J. Fluid Mech. 445 377

    [9]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924

    [10]

    Lu Y G, Wu X H 2011 Acta Phys. Sin. 60 046202 (in Chinese) [卢义刚, 吴雄慧 2011 物理学报 60 046202]

    [11]

    Jiang L, Liu F, Chen H, Chen H S, Wang J D, Chen D R 2012 Phys. Rev. E 85 36312

    [12]

    Qian Z W 1981 Acta Phys. Sin. 30 442 (in Chinese) [钱祖文 1981 物理学报 30 442]

    [13]

    An Y 2011 Phys. Rev. E 83 66313

    [14]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev.E 77 16609

    [15]

    Zabolotskaya E A, Soluyan S I 1973 Sov. Phys. Acoust. 18 396

    [16]

    An Y 2012 Phys. Rev. E 85 16305

    [17]

    Vanhille C 2013 Ultrason. Sonochem. 20 963

    [18]

    Kudryashov N A 2010 Phys. Lett. 374 2011

    [19]

    Wang Y, Lin S Y, Zhang X L 2014 Acta Phys. Sin. 63 034301 (in Chinese) [王勇, 林书玉, 张小丽 2014 物理学报 63 034301]

    [20]

    Enflo B O, Hedberg C M 2006 Theory of Nonlinear Acoustics in Fluids (Dordrecht: Kluwer Academic Publishers) p222

    [21]

    Desjouy C, Labelle P, Gilles B, Bera J C, Inserra C 2013 Phys. Rev. E 88 33006

    [22]

    Jiao J J, He Y, Leong T, Kentish S E, Ashokkumar M, Manasseh R, Lee J 2013 J. Phys. Chem. B 117 12549

    [23]

    Landau L D, Lifshitz E M (translated by Li Z) 2013 Fluid Mechanics (Beijing: Higher Education Press) pp345-348 (in Chinese) [朗道, 栗弗席兹 著 (李植 译) 2013 流体动力学 (北京:高等教育出版社) 第345–348页]

    [24]

    Ida M 2009 Phys. Rev. E 79 16307

    [25]

    Yasui K, Towata A, Tuziuti T, Kozuka T, Kato K 2011 J. Acoust. Soc Am. 130 3233

  • [1]

    Suslick K S 1990 Science 247 1439

    [2]

    Hoff L 1996 Ultrasonics 34 591

    [3]

    Edson P L 2001 Ph.D. Dissertation (Boston:Boston University)

    [4]

    Manickam S, Ashokkumar M 2014 Cavitation: A Novel Energy-Efficient Technique for the Generation of Nanomaterials (Singapore: Pan Standford Publishing Pte. Ltd.) pp1-422

    [5]

    Rayleigh L 1917 Phil. Mag. Lett. 34 94

    [6]

    Plesset M S 1949 ASME J. Appl. Mech. 16 277

    [7]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [8]

    Harkin A, Kaper T J, Nadim A 2001 J. Fluid Mech. 445 377

    [9]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924

    [10]

    Lu Y G, Wu X H 2011 Acta Phys. Sin. 60 046202 (in Chinese) [卢义刚, 吴雄慧 2011 物理学报 60 046202]

    [11]

    Jiang L, Liu F, Chen H, Chen H S, Wang J D, Chen D R 2012 Phys. Rev. E 85 36312

    [12]

    Qian Z W 1981 Acta Phys. Sin. 30 442 (in Chinese) [钱祖文 1981 物理学报 30 442]

    [13]

    An Y 2011 Phys. Rev. E 83 66313

    [14]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev.E 77 16609

    [15]

    Zabolotskaya E A, Soluyan S I 1973 Sov. Phys. Acoust. 18 396

    [16]

    An Y 2012 Phys. Rev. E 85 16305

    [17]

    Vanhille C 2013 Ultrason. Sonochem. 20 963

    [18]

    Kudryashov N A 2010 Phys. Lett. 374 2011

    [19]

    Wang Y, Lin S Y, Zhang X L 2014 Acta Phys. Sin. 63 034301 (in Chinese) [王勇, 林书玉, 张小丽 2014 物理学报 63 034301]

    [20]

    Enflo B O, Hedberg C M 2006 Theory of Nonlinear Acoustics in Fluids (Dordrecht: Kluwer Academic Publishers) p222

    [21]

    Desjouy C, Labelle P, Gilles B, Bera J C, Inserra C 2013 Phys. Rev. E 88 33006

    [22]

    Jiao J J, He Y, Leong T, Kentish S E, Ashokkumar M, Manasseh R, Lee J 2013 J. Phys. Chem. B 117 12549

    [23]

    Landau L D, Lifshitz E M (translated by Li Z) 2013 Fluid Mechanics (Beijing: Higher Education Press) pp345-348 (in Chinese) [朗道, 栗弗席兹 著 (李植 译) 2013 流体动力学 (北京:高等教育出版社) 第345–348页]

    [24]

    Ida M 2009 Phys. Rev. E 79 16307

    [25]

    Yasui K, Towata A, Tuziuti T, Kozuka T, Kato K 2011 J. Acoust. Soc Am. 130 3233

  • [1] Huang Chen-Yang, Li Fan, Tian Hua, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong, Mo Run-Yang. Analysis of suppressive effect of large bubbles on oscillation of cavitation bubble in cavitation field. Acta Physica Sinica, 2023, 72(6): 064302. doi: 10.7498/aps.72.20221955
    [2] Zhang Ying, Wu Wen-Hua, Wang Jian-Yuan, Zhai Wei. Mechanism of effect of stable cavitation on dendrite growth in ultrasonic field. Acta Physica Sinica, 2022, 71(24): 244303. doi: 10.7498/aps.71.20221101
    [3] Zheng Ya-Xin, Naranmandula. Acoustic cavitation characteristics of bubble in compressible liquid. Acta Physica Sinica, 2022, 71(1): 014301. doi: 10.7498/aps.71.20211266
    [4] Liu Jin-He, Shen Zhuang-Zhi, Lin Shu-Yu. Effect of mechanical agitation on ultrasonic cavitation dynamics. Acta Physica Sinica, 2021, 70(22): 224301. doi: 10.7498/aps.70.20211244
    [5] Acoustic cavitation characteristics of bubble in compressible liquid. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211266
    [6] Qin Dui, Zou Qing-Qin, Li Zhang-Yong, Wang Wei, Wan Ming-Xi, Feng Yi. Acoustic cavitation of encapsulated microbubble and its mechanical effect in soft tissue. Acta Physica Sinica, 2021, 70(15): 154701. doi: 10.7498/aps.70.20210194
    [7] Qinghim. Acoustic cavitation characteristics of mixed bubble groups composed of different types of bubbles. Acta Physica Sinica, 2020, 69(18): 184301. doi: 10.7498/aps.69.20200381
    [8] Li Xiang, Chen Yong, Feng Hao, Qi Lei. Axially-distributed bubble-bubble interaction under a coustic excitation in pipeline. Acta Physica Sinica, 2020, 69(18): 184703. doi: 10.7498/aps.69.20200546
    [9] Qinghim, Naranmandula. Influence of large bubbles on cavitation effect of small bubbles in cavitation multi-bubbles. Acta Physica Sinica, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [10] Chen Shi, Zhang Di, Wang Cheng-Hui, Zhang Yin-Hong. Restraining effect of resonant propagation of acousticwaves in liquids with mixed bubbles. Acta Physica Sinica, 2019, 68(7): 074301. doi: 10.7498/aps.68.20182299
    [11] Guo Ce, Zhu Xi-Jing, Wang Jian-Qing, Ye Lin-Zheng. Velocity analysis for collapsing cavitation bubble near a rigid wall under an ultrasound field. Acta Physica Sinica, 2016, 65(4): 044304. doi: 10.7498/aps.65.044304
    [12] Shen Zhuang-Zhi. Dynamical behaviors of cavitation bubble under acoustic standing wave field. Acta Physica Sinica, 2015, 64(12): 124702. doi: 10.7498/aps.64.124702
    [13] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Propagation of nonlinear waves in the bubbly liquids. Acta Physica Sinica, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [14] Liu Yun-Long, Wang Yu, Zhang A-Man. Interaction between bubble and free surface near vertical wall with inclination. Acta Physica Sinica, 2013, 62(21): 214703. doi: 10.7498/aps.62.214703
    [15] Zhang Jun, Zeng Xin-Wu, Chen Dan, Zhang Zhen-Fu. Generation of negative pressure of underwater intensive acoustic pulse and cavitation bubble dynamics. Acta Physica Sinica, 2012, 61(18): 184302. doi: 10.7498/aps.61.184302
    [16] Shen Zhuang-Zhi, Wu Sheng-Ju. Dynamical behaviors of a bubble cluster under ultrasound field. Acta Physica Sinica, 2012, 61(24): 244301. doi: 10.7498/aps.61.244301
    [17] Shen Zhuang-Zhi, Lin Shu-Yu. Chaotic characteristics of gas bubble motion in acoustic field. Acta Physica Sinica, 2011, 60(10): 104302. doi: 10.7498/aps.60.104302
    [18] Shen Zhuang-Zhi, Lin Shu-Yu. Dynamical behaviors of hydrodynamic cavitation bubble under ultrasound field. Acta Physica Sinica, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [19] Chen Qian, Zou Xin-Ye, Cheng Jian-Chun. Investigation of bubble dynamics in ultrasonic sonoporation. Acta Physica Sinica, 2006, 55(12): 6476-6481. doi: 10.7498/aps.55.6476
    [20] Liu Hai-Jun, An Yu. Pressure distribution outside a single cavitation bubble. Acta Physica Sinica, 2004, 53(5): 1406-1412. doi: 10.7498/aps.53.1406
Metrics
  • Abstract views:  5442
  • PDF Downloads:  249
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2015
  • Accepted Date:  22 May 2015
  • Published Online:  05 October 2015

/

返回文章
返回