Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultra-thin film microcrystalline silicon with high deposition rate and its application in tandem silicon solar cells

Bai Li-Sha Li Tian-Tian Liu Bo-Fei Huang Qian Li Bao-Zhang Zhang De-Kun Sun Jian Wei Chang-Chun Zhao Ying Zhang Xiao-Dan

Citation:

Ultra-thin film microcrystalline silicon with high deposition rate and its application in tandem silicon solar cells

Bai Li-Sha, Li Tian-Tian, Liu Bo-Fei, Huang Qian, Li Bao-Zhang, Zhang De-Kun, Sun Jian, Wei Chang-Chun, Zhao Ying, Zhang Xiao-Dan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Reducing production cost to accelerate the industrialization process of thin film solar cells (TFSCs) makes it urgently demanded to elevate the deposition rate and reduce the needed thickness of absorbers in addition to the prerequisite performance improvement. Based on very high frequency plasma enhanced chemical vapor deposition process with a low bombardment energy and large ion flux, ultra-thin, high-deposition-rate, and high-performing hydrogenated microcrystalline silicon (c-Si:H) single- and related hydrogenated amorphous silicon (a-Si:H)/c-Si:H double-junction TFSCs are developed in this study. By tuning various process parameters (silane concentration, power, and pressure), the deposition rates and electrical properties of c-Si:H materials are studied in detail. Device-level c-Si:H intrinsic materials with a deposition rate of 10.57 /s and photosensitivity of 7.54102 can be obtained when depositing with a silane concentration of 9%, a power of 70 W, and a pressure of 2.5 Torr. By further applying device-level high-deposition-rate c-Si:H intrinsic materials in c-Si:H single-junction TFSCs on magnetron-sputtered and wet-etched aluminum-doped zinc oxide (ZnO:Al) substrates with optimized surface morphologies and photoelectrical properties, and by combining advanced device designs, an initial conversion efficiency of 7.49% can be achieved for pin-type ultra-thin and high-deposition-rate c-Si:H single-junction TFSCs (the thickness values of intrinsic layers are 1.1~m). To further improve the conversion efficiency of TFSCs, pin-type a-Si:H/c-Si:H tandem TFSCs are fabricated by using n-a-Si/n-c-Si/n-nc-SiOx:H/p-nc-SiOx:H as the tunnel recombination junctions (TRJs), which, however, have unaddressed issues that the wide band-gap nc-SiOx:H materials with a low conductivity strongly reduce the recombination rate of carriers, thereby resulting in the photo-generated carriers accumulating near the TRJs, weakening the built-in electric field in the top sub-cells and leading to an open circuit voltage (Voc) loss in a-Si:H/c-Si:H tandem TFSCs up to 115~mV far above average values. By simultaneously inserting the p- and n-type narrow-gap c-Si:H materials, which are highly defective and narrower than the band gap of nc-SiOx:H materials, into the TRJs to implement the electrically lossless interconnection between the a-Si:H top and c-Si:H bottom sub-cells, the Voc loss is successfully reduced to 43~mV and an initial efficiency of 12.03% (Voc=1.48~eV, Jsc=11.67~mA/cm2, FF=69.59%) is achieved for ultra-thin pin-type a-Si:H/c-Si:H tandem TFSCs with a total thickness of 1.48~m, thus paving the way for the low-cost production of TFSCs.
      Corresponding author: Zhang Xiao-Dan, xdzhang@nankai.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA050302), the National Natural Science Foundation of China (Grant Nos. 61474065, 61404074), the Key Research Program of Application Foundation and Advanced Technology of Tianjin, China (Grant Nos. 15JCZDJC31300, 14JCQNJC02100), the Key Project in the Science and Technology Pillar Program of Jiangsu Province, China (Grant No. BE2014147-3), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120031110039).
    [1]

    Shah A, Meier J, Vallat-Sauvain E, Droz C, Kroll U, Wyrsch N, Guillet J, Graf U 2002 Thin Solid Films 403-404 179

    [2]

    Klein S, Finger F, Carius R, Dylla T, Rech B, Grimm M, Houben L, Stutzmann M 2003 Thin Solid Films 430 202

    [3]

    Obermeyer P, Haase C, Stiebig H 2008 Appl. Phys. Lett. 92 181102

    [4]

    Veneri P D, Mercaldo L V, Usatii I 2013 Prog. Photovoltaics Res. Appl. 21 148

    [5]

    Muller J, Rech B, Springer J, Vanecek M 2004 Solar Energy 77 917

    [6]

    Meier J, Flckiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 65 860

    [7]

    Sobajima Y, Nakano S, Nishino M, Tanaka Y, Toyama T, Okamoto H 2008 J. Non-Cryst. Solids 354 2407

    [8]

    Mai Y, Klein S, Carius R, Wolff J, Lambertz A, Finger F, Geng X 2005 J. Appl. Phys. 97 114913

    [9]

    Vetterl O, Finger F, Carius R, Hapke P, Houben L, Kluth O, Lambertz A, Mck A, Rech B, Wagner H 2000 Sol. Energy Mater. Sol. Cells 62 97

    [10]

    Martins R, Macarico A, Ferreira I, Nunes R, Bicho A, Fortunato E 1998 Thin Solid Films 317 144

    [11]

    Kroll U, Meier J, Torres P, Pohl J, Shah A 1998 J. Non-Cryst. Solids 227 68

    [12]

    Veneri P D, Mercaldo L V, Minarini C, Privato C 2004 Thin Solid Films 451 269

    [13]

    Vetterl O, Gro A, Jana T, Ray S, Lambertz A, Carius R, Finger F 2002 J. Non-Cryst. Solids 299 772

    [14]

    Bai L, Liu B, Huang Q, Li B, Zhang D, Sun J, Wei C, Chen X, Wang G, Zhao Y, Zhang X 2015 Sol. Energy Mater. Sol. Cells 140 202

    [15]

    Han X Y 2009 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese) [韩晓艳 2009 博士学位论文 (天津: 南开大学)]

    [16]

    Yan B, Yue G, Yang J, Guha S, Williamson D L, Han D, Jiang C S 2004 Appl. Phys. Lett. 85 1955

    [17]

    Shah A 2010 Thin-film Silicon Solar Cells (Lausanne: EPFL Press) p241

    [18]

    Stuckelberger M, Billet A, Riesen Y, Boccard M, Despeisse M, Schttauf J W, Haug F J, Ballif C 2014 Prog. Photovoltaics Res. Appl. DOI: 10.1002/pip.2559

    [19]

    Hegedus S S, Kampas F, Xi J 1995 Appl. Phys. Lett. 67 813

    [20]

    Hou J Y, Arch J K, Fonash S J, et al. 1991 Conference Record of the Twenty Second IEEE Las Vegas, USA, October 7-11, 1991 p1260

  • [1]

    Shah A, Meier J, Vallat-Sauvain E, Droz C, Kroll U, Wyrsch N, Guillet J, Graf U 2002 Thin Solid Films 403-404 179

    [2]

    Klein S, Finger F, Carius R, Dylla T, Rech B, Grimm M, Houben L, Stutzmann M 2003 Thin Solid Films 430 202

    [3]

    Obermeyer P, Haase C, Stiebig H 2008 Appl. Phys. Lett. 92 181102

    [4]

    Veneri P D, Mercaldo L V, Usatii I 2013 Prog. Photovoltaics Res. Appl. 21 148

    [5]

    Muller J, Rech B, Springer J, Vanecek M 2004 Solar Energy 77 917

    [6]

    Meier J, Flckiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 65 860

    [7]

    Sobajima Y, Nakano S, Nishino M, Tanaka Y, Toyama T, Okamoto H 2008 J. Non-Cryst. Solids 354 2407

    [8]

    Mai Y, Klein S, Carius R, Wolff J, Lambertz A, Finger F, Geng X 2005 J. Appl. Phys. 97 114913

    [9]

    Vetterl O, Finger F, Carius R, Hapke P, Houben L, Kluth O, Lambertz A, Mck A, Rech B, Wagner H 2000 Sol. Energy Mater. Sol. Cells 62 97

    [10]

    Martins R, Macarico A, Ferreira I, Nunes R, Bicho A, Fortunato E 1998 Thin Solid Films 317 144

    [11]

    Kroll U, Meier J, Torres P, Pohl J, Shah A 1998 J. Non-Cryst. Solids 227 68

    [12]

    Veneri P D, Mercaldo L V, Minarini C, Privato C 2004 Thin Solid Films 451 269

    [13]

    Vetterl O, Gro A, Jana T, Ray S, Lambertz A, Carius R, Finger F 2002 J. Non-Cryst. Solids 299 772

    [14]

    Bai L, Liu B, Huang Q, Li B, Zhang D, Sun J, Wei C, Chen X, Wang G, Zhao Y, Zhang X 2015 Sol. Energy Mater. Sol. Cells 140 202

    [15]

    Han X Y 2009 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese) [韩晓艳 2009 博士学位论文 (天津: 南开大学)]

    [16]

    Yan B, Yue G, Yang J, Guha S, Williamson D L, Han D, Jiang C S 2004 Appl. Phys. Lett. 85 1955

    [17]

    Shah A 2010 Thin-film Silicon Solar Cells (Lausanne: EPFL Press) p241

    [18]

    Stuckelberger M, Billet A, Riesen Y, Boccard M, Despeisse M, Schttauf J W, Haug F J, Ballif C 2014 Prog. Photovoltaics Res. Appl. DOI: 10.1002/pip.2559

    [19]

    Hegedus S S, Kampas F, Xi J 1995 Appl. Phys. Lett. 67 813

    [20]

    Hou J Y, Arch J K, Fonash S J, et al. 1991 Conference Record of the Twenty Second IEEE Las Vegas, USA, October 7-11, 1991 p1260

  • [1] Zheng Jian-Dong, Zhou Jiang, Pi Xiao-Li, Zou Chen, Li Yi-Fan, Xu Kun-Bo, Gong Zi-Zheng, Hu Guo-Jie. Hypervelocity impact on volt-ampere characteristic of solar arrays by using two-stage light gas gun. Acta Physica Sinica, 2021, 70(18): 188801. doi: 10.7498/aps.70.20210458
    [2] Wang Qi, Yan Ling-Ling, Chen Bing-Bing, Li Ren-Jie, Wang San-Long, Wang Peng-Yang, Huang Qian, Xu Sheng-Zhi, Hou Guo-Fu, Chen Xin-Liang, Li Yue-Long, Ding Yi, Zhang De-Kun, Wang Guang-Cai, Zhao Ying, Zhang Xiao-Dan. Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation. Acta Physica Sinica, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [3] Zhang Bo-Yu, Zhou Jia-Kai, Ren Cheng-Chao, Su Xiang-Lin, Ren Hui-Zhi, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Design and optimization of passivation layers and emitter layers in silicon heterojunction solar cells. Acta Physica Sinica, 2021, 70(18): 188401. doi: 10.7498/aps.70.20210674
    [4] Ren Cheng-Chao, Zhou Jia-Kai, Zhang Bo-Yu, Liu Zhang, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts. Acta Physica Sinica, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [5] Zheng Jian-Dong, Niu Jin-Chao, Zhong Hong-Xian, Gong Zi-Zheng, Cao Yan. Hypervelocity impact damage properties of solar arrays by using two-stage light gas gun. Acta Physica Sinica, 2019, 68(22): 220201. doi: 10.7498/aps.68.20191132
    [6] Tan Man-Lin, Zhou Dan-Dan, Fu Dong-Ju, Zhang Wei-Li, Ma Qing, Li Dong-Shuang, Chen Jian-Jun, Zhang Hua-Yu, Wang Gen-Ping. Performance investigation of black silicon solar cells with surface passivated by BiFeO3/ITO composite film. Acta Physica Sinica, 2017, 66(16): 167701. doi: 10.7498/aps.66.167701
    [7] Xiao You-Peng, Wang Tao, Wei Xiu-Qin, Zhou Lang. Physical mechanism and optimal design of silicon heterojunction solar cells. Acta Physica Sinica, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [8] Zhang Xiao-Yu, Zhang Li-Ping, Ma Zhong-Quan, Liu Zheng-Xin. Numerical simulation of silicon heterojunction solar cells with Si/Si1-xGex quantum wells. Acta Physica Sinica, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [9] Hou Hai-Sheng, Wang Guang-Ming, Li Hai-Peng, Cai Tong, Guo Wen-Long. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna. Acta Physica Sinica, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [10] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [11] Han An-Jun, Sun Yun, Li Zhi-Guo, Li Bo-Yan, He Jing-Jing, Zhang Yi, Liu Wei. The high efficiency sub-micrometer Cu(In, Ga)Se2 solar cell prepared on low temperature. Acta Physica Sinica, 2013, 62(4): 048401. doi: 10.7498/aps.62.048401
    [12] Zhang Xiao-Dan, Sun Fu-He, Xu Sheng-Zhi, Wang Guang-Hong, Wei Chang-Chun, Sun Jian, Hou Guo-Fu, Geng Xin-Hua, Xiong Shao-Zhen, Zhao Ying. Performance optimization of p-i-n type microcrystalline silicon thin films solar cells deposited in single chamber. Acta Physica Sinica, 2010, 59(2): 1344-1348. doi: 10.7498/aps.59.1344
    [13] Zhang Yong, Liu Yan, Lü Bin, Tang Nai-Yun, Wang Ji-Qing, Zhang Hong-Ying. Influence of barrier height of the front contact on the amorphous silicon and microcrystalline silicon heterojunction solar cells. Acta Physica Sinica, 2009, 58(4): 2829-2835. doi: 10.7498/aps.58.2829
    [14] Han Xiao-Yan, Hou Guo-Fu, Wei Chang-Chun, Zhang Xiao-Dan, Dai Zhi-Hua, Li Gui-Jun, Sun Jian, Chen Xin-Liang, Zhang De-Kun, Xue Jun-Ming, Zhao Ying, Geng Xin-Hua. Optimization of high rate growth high quality μc-Si:H thin films and its application to the solar cells. Acta Physica Sinica, 2009, 58(6): 4254-4259. doi: 10.7498/aps.58.4254
    [15] Zhang Xiao-Dan, Zhao Ying, Sun Fu-He, Wang Shi-Feng, Han Xiao-Yan, Wei Chang-Chun, Sun Jian, Geng Xin-Hua, Xiong Shao-Zhen. N-type window layer and its application in high deposition rate microcrystalline silicon solar cells. Acta Physica Sinica, 2009, 58(7): 5041-5045. doi: 10.7498/aps.58.5041
    [16] Zhao Lei, Zhou Chun-Lan, Li Hai-Ling, Diao Hong-Wei, Wang Wen-Jing. Optimizing polymorphous silicon back surface field of a-Si(n)/c-Si(p) heterojunction solar cells by simulation. Acta Physica Sinica, 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
    [17] Han Xiao-Yan, Hou Guo-Fu, Li Gui-Jun, Zhang Xiao-Dan, Yuan Yu-Jie, Zhang De-Kun, Chen Xin-Liang, Wei Chang-Chun, Sun Jian, Geng Xin-Hua. Influence of low rate p/i interface layer on the performance of high growth rate microcrystalline silicon solar cells. Acta Physica Sinica, 2008, 57(8): 5284-5289. doi: 10.7498/aps.57.5284
    [18] Zhang Xiao-Dan, Zhao Ying, Gao Yan-Tao, Chen Fei, Zhu Feng, Wei Chang-Chun, Sun Jian, Geng Xin-Hua, Xiong Shao-Zhen. Investigation of improved conversion efficiency of microcrystalline silicon thin film solar cells. Acta Physica Sinica, 2006, 55(12): 6697-6700. doi: 10.7498/aps.55.6697
    [19] Zhang Xiao-Dan, Zhao Ying, Gao Yang-Tao, Zhu Feng, Wei Chang-Chun, Sun Jian, Geng Xin-Hua, Xiong Shao-Zhen. Fabrication of intrinsic microcrystalline silicon thin films used for solar cells and its structure. Acta Physica Sinica, 2005, 54(10): 4874-4878. doi: 10.7498/aps.54.4874
    [20] Hu Zhi-Hua, Liao Xian-Bo, Zeng Xiang-Bo, Xu Yan-Yue, Zhang Shi-Bin, Diao Hong-Wei, Kong Guang-Lin. Numerical simulation of nc-Si:H/ c-Si heterojunction solar cells. Acta Physica Sinica, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
Metrics
  • Abstract views:  4603
  • PDF Downloads:  211
  • Cited By: 0
Publishing process
  • Received Date:  05 June 2015
  • Accepted Date:  21 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回