Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rectifying electromagnetic waves by a single-layer dielectric particle array based on dual-particle coupling

Zheng Hong-Xia Zhou Xin Han Ying Yu Xin-Ning Liu Shi-Yang

Citation:

Rectifying electromagnetic waves by a single-layer dielectric particle array based on dual-particle coupling

Zheng Hong-Xia, Zhou Xin, Han Ying, Yu Xin-Ning, Liu Shi-Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Metamaterials, composed of subwavelength building blocks with artificial electric/magnetic response, have attracted the intensive interest due to the unprecedented controllability of electromagnetic (EM) waves and the potential applications. Nonetheless, the resonance of the metallic building block induces a strong loss, severely limiting the performance. Dielectric particle based subwavelength structures provide an alternative choice for the manipulation of EM waves, meanwhile, circumventing the loss problem inevitable for metallic metamaterials, in particular, in optical regime. It is shown that this kind of metamaterial can be used to guide the surface wave with the dielectric particle chain, which is similar to the surface plasmon mediated wave guiding. The structure is also shown to be capable of implementing negative refraction with negligible loss theoretically and experimentally. In addition, the single-layer dielectric rod array can be used to achieve omnidirectional total reflection at subwavelength scale. To further extend the functionality of dielectric based metamaterials and make them more appropriate for integrated optics, a variety of experimentally feasible configurations should be designed. In this work, based on the Mie scattering theory and the multiple scattering theory, we investigate the manipulation of EM waves through a single-layer subwavelength dielectric rod array (SDRA) and particle coupled system. Our results show that by removing the central dielectric rod in the SDRA and at the beam focus, like a vacancy defect, a normal incident transverse electric polarized Gaussian beam is weakly transmitted with an efficiency of less than 12 percent. By further introducing a dielectric rod with optimized parameters on the incident side of the vacancy defect, an enhanced transmitted EM wave with an efficiency of 36 percent is exhibited, nearly triple that with a solely vacancy defect. By adding another identical dielectric rod symmetrically on the outgoing side of the vacancy defect, the transmitted EM field pattern can be clearly tailored due to the dual-particle coupling so that the forward scattering is intensified, similar to the beaming effect, although the total transmittance is not further improved. Interestingly, by use of dual-particle system composed of metallic rods a similar effect can be realized as well near the surface plasmon resonance, adding flexibility to design. It should be pointed out that one-way beam propagation can be possibly achieved by constructing an asymmetric dual-particle coupling system. More importantly, the proposed systems are simple and experimentally realizable, which makes them favorable for the on-chip beam steering, offering a possibility to improve the optical element design of the integration photonic circuit in the terahertz and optical range.
      Corresponding author: Liu Shi-Yang, syliu@zjnu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274277, 11574275), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16A040001), the Open Project of State Key Laboratory of Surface Physics in Fudan University, China (Grant No. KF2013_6), and the National Undergraduate Training Programs for Innovation and Entrepreneurship, China (Grant No. 201410345011).
    [1]

    Veselago V C 1968 Sov. Phys. Usp. 10 509

    [2]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    He Q, Sun S L, Xiao S Y, Li X, Song Z Y, Sun W J, Zhou L 2014 Chin. Phys. B 23 047808

    [5]

    Monticone F, Al A 2014 Chin. Phys. B 23 047809

    [6]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [7]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [8]

    Lai Y, Chen H Y, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901

    [9]

    Chen H S, Zheng B, Shen L, Wang H P, Zhang X M, Zheludev N I, Zhang B L 2013 Nat. Commun. 4 2652

    [10]

    Sun L K, Yu Z F, H J 2015 Acta Phys. Sin. 64 084401 (in Chinese) [孙良奎, 于哲峰, 黄洁 2015 物理学报 64 084401]

    [11]

    Liu X B, Liu M L, Chen J Z, Shi H Y, Chen B, Jiang Y S, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 084202 (in Chinese) [刘晓波, 刘明黎, 陈建忠, 施宏宇, 陈博, 蒋延生, 徐卓, 张安学 2015 物理学报 64 084202]

    [12]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [13]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [14]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)

    [15]

    Ozbay E 2006 Science 311 189

    [16]

    Soukoulis C M, Wegener M 2010 Science 330 1633

    [17]

    Khurgin J B 2015 Nat. Nanotechnol. 10 2

    [18]

    Liu S Y, Chen W K, Du J J, Lin Z F, Chui S T, Chan C T 2008 Phys. Rev. Lett. 101 157407

    [19]

    Poo Y, Wu R X, Liu S Y, Yang Y, Lin Z F, Chui S T 2012 Appl. Phys. Lett. 101 081912

    [20]

    Yu J J, Chen H J, Wu Y B, Liu S Y 2012 Eur. Phys. Lett. 100 47007

    [21]

    Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203 (in Chinese) [林海笑, 俞昕宁, 刘士阳 2015 物理学报 64 034203]

    [22]

    Tong L, Gattass R R, Ashcom J B, He S L, Lou J, Shen M, Maxwell I, Mazur E 2003 Nature 426 816

    [23]

    Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P 2004 Science 305 1269

    [24]

    Guo Y S, Zhou J, Lan C W, Bi K 2014 Appl. Phys. Lett. 104 123902

    [25]

    Du J J, Liu S Y, Lin Z F, Zi J, Chui S T 2009 Phys. Rev. A 79 051801

    [26]

    Du J J, Liu S Y, Lin Z F, Zi J, Chui S T 2011 Phys. Rev. A 83 035803

    [27]

    Du J J, Lin Z F, Chui S T, Lu W L, Li H, Wu A M, Sheng Z, Zi J, Wang X, Zou S C, Gan F W 2011 Phys. Rev. Lett. 106 203903

    [28]

    Du J J, Lin Z F, Chui S T, Dong G J, Zhang W P 2013 Phys. Rev. Lett. 110 163902

    [29]

    Wu A M, Li H, Du J J, Ni X J, Ye Z L, Wang Y, Sheng Z, Zou S C, Gan F W, Zhang X, Wang X 2015 Nano Lett. 15 2055

    [30]

    Felbacq D, Tayeb G, Maystre D 1994 J. Opt. Soc. Am. A 11 2526

    [31]

    Liu S Y, Lin Z F 2006 Phys. Rev. E 73 066609

    [32]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martn-Moreno L, Garca-Vidal F J, Ebbesen T W 2002 Science 297 820

    [33]

    Martn-Moreno L, Garca-Vidal F J, Lezec H J, Degiron A, Ebbesen T W 2003 Phys. Rev. Lett. 90 167401

    [34]

    Guo Y S, Zhou J, Lan C W, Wu H Y, Bi K 2014 Appl. Phys. Lett. 104 204103

    [35]

    Cai W S, Shalaev V 2010 Optical Metamaterials: Fundamentals and Applications (New York: Springer) pp20-21

  • [1]

    Veselago V C 1968 Sov. Phys. Usp. 10 509

    [2]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    He Q, Sun S L, Xiao S Y, Li X, Song Z Y, Sun W J, Zhou L 2014 Chin. Phys. B 23 047808

    [5]

    Monticone F, Al A 2014 Chin. Phys. B 23 047809

    [6]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [7]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [8]

    Lai Y, Chen H Y, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901

    [9]

    Chen H S, Zheng B, Shen L, Wang H P, Zhang X M, Zheludev N I, Zhang B L 2013 Nat. Commun. 4 2652

    [10]

    Sun L K, Yu Z F, H J 2015 Acta Phys. Sin. 64 084401 (in Chinese) [孙良奎, 于哲峰, 黄洁 2015 物理学报 64 084401]

    [11]

    Liu X B, Liu M L, Chen J Z, Shi H Y, Chen B, Jiang Y S, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 084202 (in Chinese) [刘晓波, 刘明黎, 陈建忠, 施宏宇, 陈博, 蒋延生, 徐卓, 张安学 2015 物理学报 64 084202]

    [12]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [13]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [14]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)

    [15]

    Ozbay E 2006 Science 311 189

    [16]

    Soukoulis C M, Wegener M 2010 Science 330 1633

    [17]

    Khurgin J B 2015 Nat. Nanotechnol. 10 2

    [18]

    Liu S Y, Chen W K, Du J J, Lin Z F, Chui S T, Chan C T 2008 Phys. Rev. Lett. 101 157407

    [19]

    Poo Y, Wu R X, Liu S Y, Yang Y, Lin Z F, Chui S T 2012 Appl. Phys. Lett. 101 081912

    [20]

    Yu J J, Chen H J, Wu Y B, Liu S Y 2012 Eur. Phys. Lett. 100 47007

    [21]

    Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203 (in Chinese) [林海笑, 俞昕宁, 刘士阳 2015 物理学报 64 034203]

    [22]

    Tong L, Gattass R R, Ashcom J B, He S L, Lou J, Shen M, Maxwell I, Mazur E 2003 Nature 426 816

    [23]

    Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P 2004 Science 305 1269

    [24]

    Guo Y S, Zhou J, Lan C W, Bi K 2014 Appl. Phys. Lett. 104 123902

    [25]

    Du J J, Liu S Y, Lin Z F, Zi J, Chui S T 2009 Phys. Rev. A 79 051801

    [26]

    Du J J, Liu S Y, Lin Z F, Zi J, Chui S T 2011 Phys. Rev. A 83 035803

    [27]

    Du J J, Lin Z F, Chui S T, Lu W L, Li H, Wu A M, Sheng Z, Zi J, Wang X, Zou S C, Gan F W 2011 Phys. Rev. Lett. 106 203903

    [28]

    Du J J, Lin Z F, Chui S T, Dong G J, Zhang W P 2013 Phys. Rev. Lett. 110 163902

    [29]

    Wu A M, Li H, Du J J, Ni X J, Ye Z L, Wang Y, Sheng Z, Zou S C, Gan F W, Zhang X, Wang X 2015 Nano Lett. 15 2055

    [30]

    Felbacq D, Tayeb G, Maystre D 1994 J. Opt. Soc. Am. A 11 2526

    [31]

    Liu S Y, Lin Z F 2006 Phys. Rev. E 73 066609

    [32]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martn-Moreno L, Garca-Vidal F J, Ebbesen T W 2002 Science 297 820

    [33]

    Martn-Moreno L, Garca-Vidal F J, Lezec H J, Degiron A, Ebbesen T W 2003 Phys. Rev. Lett. 90 167401

    [34]

    Guo Y S, Zhou J, Lan C W, Wu H Y, Bi K 2014 Appl. Phys. Lett. 104 204103

    [35]

    Cai W S, Shalaev V 2010 Optical Metamaterials: Fundamentals and Applications (New York: Springer) pp20-21

  • [1] Wen Guang-Feng, Zhao Ling-Zhong, Zhang Lin, Chen Yi-Yun, Luo Qi-Lin, Fang An-An, Liu Shi-Yang. Tunable beam propagation based on cylindrically symmetric gradient index system. Acta Physica Sinica, 2022, 71(14): 144201. doi: 10.7498/aps.71.20212247
    [2] Yang Rui-Ke, Li Qian-Qian, Yao Rong-Hui. Multiple scattering and attenuation for electromagnetic wave propagation in sand and dust atmosphere. Acta Physica Sinica, 2016, 65(9): 094205. doi: 10.7498/aps.65.094205
    [3] Zhang Jin-Bi, Ding Lei, Wang Ying-Ping, Zheng Hai-Yang, Fang Li. Shape classification of single aerosol particle using near-forward optical scattering patterns calculation. Acta Physica Sinica, 2015, 64(5): 054202. doi: 10.7498/aps.64.054202
    [4] Gao Xiang, Shi Yong-Qiang, Yang Qing-Zhen, Chen Li-Hai. Electromagnetic scattering characteristics of double S-shape exhaust nozzle with different coating medium parts. Acta Physica Sinica, 2015, 64(2): 024103. doi: 10.7498/aps.64.024103
    [5] Lin Hai-Xiao, Yu Xin-Ning, Liu Shi-Yang. Manipulation of electromagnetic wavefront based on zero index magnetic metamaterial. Acta Physica Sinica, 2015, 64(3): 034203. doi: 10.7498/aps.64.034203
    [6] Zhang Yu, Zhang Xiao-Juan, Fang Guang-You. Investigation on the characteristics of electromagnetic scattering from large-scale rough surface of layered medium. Acta Physica Sinica, 2012, 61(18): 184203. doi: 10.7498/aps.61.184203
    [7] Qian Ke-Yuan, Ma Jun, Fu Wei, Luo Yi. Research on scattering properties of phosphor for high power white light emitting diode based on Mie scattering theory. Acta Physica Sinica, 2012, 61(20): 204201. doi: 10.7498/aps.61.204201
    [8] Ding Pei, Zhou Qiang, Hu Wei-Qin, Cai Gen-Wang, Liang Er-Jun. Selectable electromagnetic response modes and negative refraction in rectangular dielectric metamaterials. Acta Physica Sinica, 2011, 60(5): 054102. doi: 10.7498/aps.60.054102
    [9] Liu Wen-Jun, Mao Hong-Yan, Fu Guo-Qing, Qu Shi-Liang. Temporal statistics of multiply scattered terahertz pulses in scattering medium. Acta Physica Sinica, 2010, 59(2): 913-917. doi: 10.7498/aps.59.913
    [10] Wu Da-Jian, Liu Xiao-Jun. Study on the optical absorption of gold nanoshells by Mie theory. Acta Physica Sinica, 2008, 57(8): 5138-5142. doi: 10.7498/aps.57.5138
    [11] Wang Qing-Hua, Zhang Ying-Ying, Lai Jian-Cheng, Li Zhen-Hua, He An-Zhi. Application of Mie theory in biological tissue scattering characteristics analysis. Acta Physica Sinica, 2007, 56(2): 1203-1207. doi: 10.7498/aps.56.1203
    [12] Liu Xiao-Dong, Li Shu-Guang, Hou Lan-Tian, Wang Hui-Tian. . Acta Physica Sinica, 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
    [13] CAO SONG, TANG JING-CHANG, WANG LEI, ZHU PING. THE LOCAL ADSORPTION STRUCTURE OF SO2/Ni(111):THEMULTIPLE-SCATTERING CLUSTER STUDIES. Acta Physica Sinica, 2001, 50(9): 1756-1762. doi: 10.7498/aps.50.1756
    [14] ZHU PING, TANG JING-CHANG, HE JIANG-PING. MULTIPLE-SCATTING CLUSTER STUDIES OF SO2 ADSORBED ON Ag(110). Acta Physica Sinica, 2000, 49(8): 1632-1638. doi: 10.7498/aps.49.1632
    [15] Zhang Fei, Tang Jing-Chang, He Jiang-Peng, Wang Lei. . Acta Physica Sinica, 2000, 49(3): 570-576. doi: 10.7498/aps.49.570
    [16] FENG XIAO-SONG, TANG JING-CHANG. MULTIPLE-SCATTERING THEORETICAL STUDY ON NEAR-EDGE X-RAY ABSORPTION SPECTRA OF C2H4/Ni(100). Acta Physica Sinica, 1993, 42(4): 647-655. doi: 10.7498/aps.42.647
    [17] TANG JING-CHANG, FU SONG-BAO, JI HONG, CHEN YI-BING. STRUCTURE DETERMINATION OF HCOO-Cu(110) BY MULTIPLE SCATTERING CLUSTER METHOD. Acta Physica Sinica, 1992, 41(6): 968-976. doi: 10.7498/aps.41.968
    [18] PAN XIAO-CHUAN, LIANG XIAO-LING, LI JIA-MING. QUANTUM DEFECT THEORY——THEORETICAL MULTIPLE-SCATTERING CALCULATIONS. Acta Physica Sinica, 1987, 36(4): 426-435. doi: 10.7498/aps.36.426
    [19] SHEN HAO-MING. ON THE THEORY OF SCATTERING BY A SPHERICAL MIRROR. Acta Physica Sinica, 1978, 27(5): 533-546. doi: 10.7498/aps.27.533
    [20] YANG TSE-SEN. THE TIME-DEPENDING SCATTERING THEORY OF MULTI-CHANNEL PROCESS. Acta Physica Sinica, 1963, 19(4): 239-248. doi: 10.7498/aps.19.239
Metrics
  • Abstract views:  4358
  • PDF Downloads:  230
  • Cited By: 0
Publishing process
  • Received Date:  29 April 2015
  • Accepted Date:  16 June 2015
  • Published Online:  05 November 2015

/

返回文章
返回