Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lateral mode suppression and experiment for the ZnO ring thin-film bulk acoustic resonator (Retracted)  

Li Yu-Jin Yuan Xiu-Hua Zhao Ming Wang Yun-He

Citation:

Lateral mode suppression and experiment for the ZnO ring thin-film bulk acoustic resonator (Retracted)  

Li Yu-Jin, Yuan Xiu-Hua, Zhao Ming, Wang Yun-He
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we analytically study the spurious lateral mode of the ring (circular) thin-film bulk acoustic resonator (FBAR) by using Tiersten equation. The lateral mode displacement field and frequency dispersion equation are obtained. According to the electromagnetic mode analysis, we find that the mode frequency and spurious electrical responses relate to the ratio of inner radius to outer radius (a/b) of the ring resonator, and its lateral vibration mode can be obtained by coupling other circular FBAR modes. The ring electrode can greatly reduce the number of spurious electrical responses caused by lateral resonances. Suppressing lateral mode and adjusting fundamental frequency can be achieved by controlling a/b. In this paper, the experiments for the same batch of ring and circular FBARs are carried out by using a heterodyne interferometer and a vector network analyzer, including the measurements of acoustic wave fields and eigenmode spectra, which can provide the information about vibration localization and coupling between lateral mode and thickness extensional mode. The data indicate that the lateral vibration mode of ring FBAR can be obtained by coupling the two modes of circular FBARs, whose radii are a and b, respectively, and the lateral mode pattern of n' = 0 is suppressed. When the ring resonator is designed with an a/b ratio of 0.436, the fundamental frequency (~ 1217 MHz) is the same as the (0, 1) mode frequency of the circular FBAR. Based on this observation, the acoustic wave field images and electrical spurious responses can accurately describe the lateral modes, and the obtained results accord well with the analyses of theoretical electromagnetic modes. This phenomenon may be found to have applications in the design and theoretical analysis of the resonators.
      Corresponding author: Yuan Xiu-Hua, yuanxh@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275081).
    [1]

    Weigel R, Morgan D P, Owens J M, Ballato A, Lakin K M, Hashimoto K, Ruppel C C 2002 IEEE Trans. Microw. Theory Technol. 50 738

    [2]

    Kim Y D, Sunwoo K H, Sul S C, Lee J H, Kim D H, Song I S, Choa S H, Yook J G 2006 IEEE Trans. Microw. Theory Technol. 54 1218

    [3]

    Su Q X, Kirby P, Komuro E, Imura M, Zhang Q, Whatmore R 2001 IEEE Trans. Microw. Theory Technol. 49 769

    [4]

    Zhou Z K, Wei L M, Feng J 2013 Acta Phys. Sin. 62 104601 (in Chinese) [周振凯, 韦利明, 丰杰 2013 物理学报 62 104601]

    [5]

    Chen D, Wang J J, Xu Y, Li D H, Zhang L Y, Liu W H 2013 J. Micromech. Microeng. 23 095032

    [6]

    Link M, Schreiter M, Weber J, Primig R, Pitzer D, Gabl R 2006 IEEE Trans. Ultrason. Ferroelect. Freq. Control 53 492

    [7]

    Zhang H, Zhang S Y, Fan L 2011 Chin. Phys. Lett. 28 114301

    [8]

    Chao M C, Huang Z N, Pao S Y, Wang Z, Lam C S 2002 IEEE International Ultrasonics Symposium Munich, Germany, October 8-11, 2002 p973

    [9]

    Bradley P D, Ruby III R C, Larson J D, Oshmyansky Y, Figueredo D A 2001 IEEE MTT-S Int. Microwave Symp. Dig. 1 367

    [10]

    Larson III J D, Ruby R C, Bradley P D 2001 US Patent 6 215 375 B1 [2001-4-10]

    [11]

    Ruby R C, Bradley P D, Oshmyansky Y, Figueredo D A 2004 US Patent 6 714 102 B2 [2004-03-30]

    [12]

    Kaitila J, Ylilammi M, Ella J 2001 International Patent WO 2001006647 A1 [2001-1-25]

    [13]

    Cushman D, Crawford J D 2002 US Patent 6381820 B1 [2002-05-07]

    [14]

    Larson III J D, Bradley P D, Wartenberg S, Ruby R C 2000 IEEE Ultrasonics Symposium San Juan, Puerto Rico, October 22-25, 2000 p863

    [15]

    Makkonen T, Holappa A, Ell J, Salomaa M 2001 2001 IEEE Trans. IEEE Trans. Ultrason. Ferroelect. Freq. Control. 48 1240

    [16]

    Kokkonen K, Meltaus J, Pensala T, Kaivola M 2012 IEEE Trans. Ultrason. Ferroelect. Freq. Control 59 557

    [17]

    Tiersten H F, Stevens D S 1983 J. Appl. Phys. 54 5893

    [18]

    Kokkonen K, Pensala T, Kaivola M 2011 IEEE Trans. Ultrason. Ferroelect. Freq. Control 58 215

    [19]

    Leissa A W 2001 Int. J. Solids Struct. 38 3341

    [20]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905

    [21]

    Flax L, Dragonette L R, berall H 1978 J. Acoust. Soc. Am. 63 723

    [22]

    Chew W C 1995 Waves Fields in Inhomogenous Media (New York: Wiley-IEEE Press) pp161-167

    [23]

    Wong W O, Yam L H, Li Y Y, Law L Y, Chan K T 2000 J. Sound Vib. 232 807

    [24]

    Murphy J D, Breitenbach E D, berall H 1978 J. Acoust. Soc. Am. 64 677

  • [1]

    Weigel R, Morgan D P, Owens J M, Ballato A, Lakin K M, Hashimoto K, Ruppel C C 2002 IEEE Trans. Microw. Theory Technol. 50 738

    [2]

    Kim Y D, Sunwoo K H, Sul S C, Lee J H, Kim D H, Song I S, Choa S H, Yook J G 2006 IEEE Trans. Microw. Theory Technol. 54 1218

    [3]

    Su Q X, Kirby P, Komuro E, Imura M, Zhang Q, Whatmore R 2001 IEEE Trans. Microw. Theory Technol. 49 769

    [4]

    Zhou Z K, Wei L M, Feng J 2013 Acta Phys. Sin. 62 104601 (in Chinese) [周振凯, 韦利明, 丰杰 2013 物理学报 62 104601]

    [5]

    Chen D, Wang J J, Xu Y, Li D H, Zhang L Y, Liu W H 2013 J. Micromech. Microeng. 23 095032

    [6]

    Link M, Schreiter M, Weber J, Primig R, Pitzer D, Gabl R 2006 IEEE Trans. Ultrason. Ferroelect. Freq. Control 53 492

    [7]

    Zhang H, Zhang S Y, Fan L 2011 Chin. Phys. Lett. 28 114301

    [8]

    Chao M C, Huang Z N, Pao S Y, Wang Z, Lam C S 2002 IEEE International Ultrasonics Symposium Munich, Germany, October 8-11, 2002 p973

    [9]

    Bradley P D, Ruby III R C, Larson J D, Oshmyansky Y, Figueredo D A 2001 IEEE MTT-S Int. Microwave Symp. Dig. 1 367

    [10]

    Larson III J D, Ruby R C, Bradley P D 2001 US Patent 6 215 375 B1 [2001-4-10]

    [11]

    Ruby R C, Bradley P D, Oshmyansky Y, Figueredo D A 2004 US Patent 6 714 102 B2 [2004-03-30]

    [12]

    Kaitila J, Ylilammi M, Ella J 2001 International Patent WO 2001006647 A1 [2001-1-25]

    [13]

    Cushman D, Crawford J D 2002 US Patent 6381820 B1 [2002-05-07]

    [14]

    Larson III J D, Bradley P D, Wartenberg S, Ruby R C 2000 IEEE Ultrasonics Symposium San Juan, Puerto Rico, October 22-25, 2000 p863

    [15]

    Makkonen T, Holappa A, Ell J, Salomaa M 2001 2001 IEEE Trans. IEEE Trans. Ultrason. Ferroelect. Freq. Control. 48 1240

    [16]

    Kokkonen K, Meltaus J, Pensala T, Kaivola M 2012 IEEE Trans. Ultrason. Ferroelect. Freq. Control 59 557

    [17]

    Tiersten H F, Stevens D S 1983 J. Appl. Phys. 54 5893

    [18]

    Kokkonen K, Pensala T, Kaivola M 2011 IEEE Trans. Ultrason. Ferroelect. Freq. Control 58 215

    [19]

    Leissa A W 2001 Int. J. Solids Struct. 38 3341

    [20]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905

    [21]

    Flax L, Dragonette L R, berall H 1978 J. Acoust. Soc. Am. 63 723

    [22]

    Chew W C 1995 Waves Fields in Inhomogenous Media (New York: Wiley-IEEE Press) pp161-167

    [23]

    Wong W O, Yam L H, Li Y Y, Law L Y, Chan K T 2000 J. Sound Vib. 232 807

    [24]

    Murphy J D, Breitenbach E D, berall H 1978 J. Acoust. Soc. Am. 64 677

  • [1] Guo Jia-Jun, Dong Jing-Yu, Kang Xin, Chen Wei, Zhao Xu. Effect of transition metal element X (X=Mn, Fe, Co, and Ni) doping on performance of ZnO resistive memory. Acta Physica Sinica, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [2] Zhu Hui-Qun, Li Yi, Ye Wei-Jie, Li Chun-Bo. Thermochromic properties of W-doped VO2/ZnO nanocomposite films with flower structures. Acta Physica Sinica, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [3] Li Ming-Jie, Gao Hong, Li Jiang-Lu, Wen Jing, Li Kai, Zhang Wei-Guang. Electrical properties of single ZnO nanobelt in low temperature. Acta Physica Sinica, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [4] Wu Ping, Zhang Jie, Li Xi-Feng, Chen Ling-Xiang, Wang Lei, Lü Jian-Guo. Ultraviolet photoresponse of ZnO thin-film transistor fabricated at room temperature. Acta Physica Sinica, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [5] Zhang Fu-Chun, Zhang Wei-Hu, Dong Jun-Tang, Zhang Zhi-Yong. Electronic structure and magnetism of Cr-doped ZnO nanowires. Acta Physica Sinica, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [6] Li Yi, Zhu Hui-Qun, Zhou Sheng, Huang Yi-Ze, Tong Guo-Xiang, Sun Ruo-Xi, Zhang Yu-Ming, Zheng Qiu-Xin, Li Liu, Shen Yu-Jian, Fang Bao-Ying. Study on thermochromic properties of VO2/ZnO nanocrystalline composite films. Acta Physica Sinica, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [7] Bao Shan-Yong, Dong Wu-Jun, Xu Xing, Luan Tian-Bao, Li Jie, Zhang Qing-Yu. Influence of oxygen partial pressure on the crystal quality and optical properties of Mg-doped ZnO films. Acta Physica Sinica, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [8] Wang Wen-Peng, Xu Zhou-Su, Xu Jun, Chen Gang. Measurement and analysis of the characteristics of transverse modes of a sealed-off He-N2-CO2 laser. Acta Physica Sinica, 2009, 58(8): 5423-5428. doi: 10.7498/aps.58.5423
    [9] Cui Xiu-Zhi, Zhang Tian-Chong, Mei Zeng-Xia, Liu Zhang-Long, Liu Yao-Ping, Guo Yang, Su Xi-Yu, Xue Qi-Kun, Du Xiao-Long. Influence of wet etching on the morphologies of Si patterned substrates and ZnO epilayers. Acta Physica Sinica, 2009, 58(1): 309-314. doi: 10.7498/aps.58.309
    [10] Huang Jin-Hua, Zhang Kun, Pan Nan, Gao Zhi-Wei, Wang Xiao-Ping. Enhancing ultraviolet photoresponse of ZnO nanowire device by surface functionalization. Acta Physica Sinica, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [11] Yu Zhou, Li Xiang, Long Xue, Cheng Xing-Wang, Wang Jing-Yun, Liu Ying, Cao Mao-Sheng, Wang Fu-Chi. Study of synthesis and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors. Acta Physica Sinica, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [12] Yang Xin-Sheng, Zhao Yong. The study of ZnO varistor doped with ferromagnetic manganese oxide. Acta Physica Sinica, 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [13] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [14] Yang Hao, Guo Xia, Guan Bao-Lu, Wang Tong-Xi, Shen Guang-Di. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [15] Li Hui, Xie Er-Qing, Zhang Hong-Liang, Pan Xiao-Jun, Zhang Yong-Zhe. Optical properties of ZnO and MgxZn1-xO nanoparticles prepared by flame spray synthesis. Acta Physica Sinica, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [16] Liu Xue-Chao, Shi Er-Wei, Song Li-Xin, Zhang Hua-Wei, Chen Zhi-Zhan. Magnetic and optical properties of Co doped ZnO powders synthesized by solid-state reaction. Acta Physica Sinica, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
    [17] Chen Zhi-Quan, Kawasuso Atsuo. Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam. Acta Physica Sinica, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [18] Li Yong, Sun Cheng-Wei, Liu Zhi-Wen, Zhang Qing-Yu. Study of ZnO film growth by reactive magnetron sputtering using plasma emission spectra. Acta Physica Sinica, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [19] Yang Chun, Yu Yi, Li Yan-Rong, Liu Yong-Hua. Temperature effect on the adsorption, diffusion and initial growth mode of ZnO/Al2O3(0001) from first principles. Acta Physica Sinica, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [20] Yuan Hong-Tao, Zhang Yao, Gu Jing-Hua. A study on the in-situ growth of highly oriented ZnO whisker. Acta Physica Sinica, 2004, 53(2): 646-650. doi: 10.7498/aps.53.646
Metrics
  • Abstract views:  4951
  • PDF Downloads:  341
  • Cited By: 0
Publishing process
  • Received Date:  02 April 2015
  • Accepted Date:  07 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回