Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A design of high-gain end-fire antenna based on split-ring resonator structures

Liu Hong-Xi Gao Jun Cao Xiang-Yu Liu Yan-Fang Zhang Di Li Si-Jia

Citation:

A design of high-gain end-fire antenna based on split-ring resonator structures

Liu Hong-Xi, Gao Jun, Cao Xiang-Yu, Liu Yan-Fang, Zhang Di, Li Si-Jia
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Vivaldi antennas have wide applications in practice due to the ultra-wide band properties; however, their gain and directivity are relatively low. In this paper, a new method is presented to improve the gain and directivity of Vivaldi antennas in a broad band using split-ring resonator (SRR). Based on the peculiar electromagnetic properties of SRR, a novel high-gain SRR-Vivaldi end-fire antenna in C and X bands is designed and fabricated. The size of the antenna is only 0.33λ ×0.33λ ×0.013λ, a significant miniaturization. Equivalent analysis method has been adopted to study the resonance characteristic of an SRR structure. By adding the SRR structures the singular metamaterials in the front of the Vivaldi antenna have an exponential taper slot, and the SRR structures can play a role as a director which has the ability to enhance the antenna's directivity so that the surface currents will focus on the end-fire direction. The SRR structures have been analyzed, designed, and fabricated, which can be embedded into the original Vivaldi antenna smoothly and compactly. As a result, the gain of the SRR-Vivaldi antenna are enhanced effectively, while the size and bandwidth of the original antenna can be kept, with the reflection coeffcient less than -10 dB from 4 to 13.6 GHz after using SRR. The novel Vivaldi antenna based on the SRR has good features of high gain, high directivity, low return loss and low cross-polarization. Compared to the original Vivaldi antenna, the simulation and measured results demonstrate that the gain of the novel SRR-Vivaldi antenna in C band has been increased by an average value of 75.44% and the half-power beam width has been decreased by 20 degrees in xoy and xoz planes. Meanwhile, the gain has been increased by an average value of 24.46% in X band and the half-power beam width has been decreased by 25 degrees in xoz plane. Testing result of the fabricated antenna demonstrates the reliability of the design. A good agreement between simulations and measurements is obtained. The design owns the merits of low cost, simple design and ease in fabrication and conformation, thus provides a new idea for end-fire antenna gain and directivity improvement. The new antenna has great potentials in applications.
      Corresponding author: Gao Jun, gjgj9694@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271100, 61471389), the Natural Science Foundation of Shanxi Province, China (Grant No. 2012JM8003).
    [1]

    Jeremie B, Michal O, Elise C F 2010 IEEE Trans. Antennas Propagat 58 2318

    [2]

    Aaron Z H, Tutku K, Erdem T 2008 IEEE Antennas and Wireless Propagation Letter 7 656

    [3]

    Bai J, Shi S Y, Dennis W P 2011 IEEE Trans. Microw. Theory Tech 59 1051

    [4]

    Wang Y W, Wang G M, Yu Z W, Liang J G, Gao X J 2014 IEEE Trans. Antennas Propagat 62 4961

    [5]

    Schaubert D H, Aas J A, Cooley M E 1994 IEEE Trans. Antennas Propagat 42 1161

    [6]

    Zhou B, Li H, Zou X Y, Cui T J 2011 Progress In Electromagnetics Research 120 235

    [7]

    Guntupalli A B, Wu K 2014 IEEE Antennas and Wireless Propagation Letter 13 384

    [8]

    Yeap S B, Chen Z M 2010 IEEE Trans. Antennas Propagat 58 2811

    [9]

    Wu B I, Wang W, Pacheco J, Chen X, Grzegorczyk T M, Kong J A 2005 Progress In Electromagnetics Research 51 295

    [10]

    Chen L, Lei Z Y, Yang R, Fan J, Shi X W 2015 IEEE Trans. Antennas Propagat 63 395

    [11]

    Lovat G, Burghignoli P, Capolino F, Jackson D R, Wilton D R 2006 IEEE Trans. Antennas Propagat 54 1017

    [12]

    Zhou H, Pei Z B, Qu S B, Zhang S, Wang J F, Duan Z S, Ma H, Xu Z 2009 IEEE Antennas and Wireless Propagation Letter 8 538

    [13]

    Cook B S, Shamim A 2013 IEEE Antennas and Wireless Propagation Letter 12 76

    [14]

    Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Antennas Propagat 60 743

    [15]

    Prakash P, Abegaonkar M P, Basu A, Koul S K 2013 IEEE Antennas and Wireless Propagation Letter 12 1315

    [16]

    Yuan Z D, Gao J, Cao X Y, Yang H H, Yang Q, Li W Q, Shang K 2014 Acta Phys. Sin. 63 014102 (in Chinese) [袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷 2014 物理学报 63 014102]

    [17]

    Debdeep S, Kumar V S Proceedings of the“2013 International Symposium on Electromagnetic Theory”. Hiroshima, Japan, May 20-23, 2013 p466

    [18]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese) [赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 物理学报 62 154204]

    [19]

    Liu H W, Zhu S S, Wen P, Qin F, Ren B P, Xiao X, Hou X Y 2015 Acta Phys. Sin. 64 038108 (in Chinese) [刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇 2015 物理学报 64 038108]

    [20]

    Ding C F, Zhang Y T, Yao J Q, Sun C L, Xu D G, Zhang G Z 2014 Chin. Phys. B 23 124203

    [21]

    Tang W X, Zhao H, Zhou X, Chin J Y, Cui T J 2008 Progress In Electromagnetics Research B 8 103

    [22]

    Bahl I, Bhartia P (translated by Zheng X) 2006 Microwave Solid State Circuit Design (Vol. 2) (Beijing: Publishing House of Electronics Industry) pp53-80 (in Chinese) [(美)巴尔, 巴希尔著(郑新译) 2006 微波固态电路设计(北京: 电子工业版社)第 53–80 页]

    [23]

    Marques R, Mesa F, Martel J, Medina F 2003 IEEE Trans. Antennas Propag 51 2572

  • [1]

    Jeremie B, Michal O, Elise C F 2010 IEEE Trans. Antennas Propagat 58 2318

    [2]

    Aaron Z H, Tutku K, Erdem T 2008 IEEE Antennas and Wireless Propagation Letter 7 656

    [3]

    Bai J, Shi S Y, Dennis W P 2011 IEEE Trans. Microw. Theory Tech 59 1051

    [4]

    Wang Y W, Wang G M, Yu Z W, Liang J G, Gao X J 2014 IEEE Trans. Antennas Propagat 62 4961

    [5]

    Schaubert D H, Aas J A, Cooley M E 1994 IEEE Trans. Antennas Propagat 42 1161

    [6]

    Zhou B, Li H, Zou X Y, Cui T J 2011 Progress In Electromagnetics Research 120 235

    [7]

    Guntupalli A B, Wu K 2014 IEEE Antennas and Wireless Propagation Letter 13 384

    [8]

    Yeap S B, Chen Z M 2010 IEEE Trans. Antennas Propagat 58 2811

    [9]

    Wu B I, Wang W, Pacheco J, Chen X, Grzegorczyk T M, Kong J A 2005 Progress In Electromagnetics Research 51 295

    [10]

    Chen L, Lei Z Y, Yang R, Fan J, Shi X W 2015 IEEE Trans. Antennas Propagat 63 395

    [11]

    Lovat G, Burghignoli P, Capolino F, Jackson D R, Wilton D R 2006 IEEE Trans. Antennas Propagat 54 1017

    [12]

    Zhou H, Pei Z B, Qu S B, Zhang S, Wang J F, Duan Z S, Ma H, Xu Z 2009 IEEE Antennas and Wireless Propagation Letter 8 538

    [13]

    Cook B S, Shamim A 2013 IEEE Antennas and Wireless Propagation Letter 12 76

    [14]

    Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Antennas Propagat 60 743

    [15]

    Prakash P, Abegaonkar M P, Basu A, Koul S K 2013 IEEE Antennas and Wireless Propagation Letter 12 1315

    [16]

    Yuan Z D, Gao J, Cao X Y, Yang H H, Yang Q, Li W Q, Shang K 2014 Acta Phys. Sin. 63 014102 (in Chinese) [袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷 2014 物理学报 63 014102]

    [17]

    Debdeep S, Kumar V S Proceedings of the“2013 International Symposium on Electromagnetic Theory”. Hiroshima, Japan, May 20-23, 2013 p466

    [18]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese) [赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 物理学报 62 154204]

    [19]

    Liu H W, Zhu S S, Wen P, Qin F, Ren B P, Xiao X, Hou X Y 2015 Acta Phys. Sin. 64 038108 (in Chinese) [刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇 2015 物理学报 64 038108]

    [20]

    Ding C F, Zhang Y T, Yao J Q, Sun C L, Xu D G, Zhang G Z 2014 Chin. Phys. B 23 124203

    [21]

    Tang W X, Zhao H, Zhou X, Chin J Y, Cui T J 2008 Progress In Electromagnetics Research B 8 103

    [22]

    Bahl I, Bhartia P (translated by Zheng X) 2006 Microwave Solid State Circuit Design (Vol. 2) (Beijing: Publishing House of Electronics Industry) pp53-80 (in Chinese) [(美)巴尔, 巴希尔著(郑新译) 2006 微波固态电路设计(北京: 电子工业版社)第 53–80 页]

    [23]

    Marques R, Mesa F, Martel J, Medina F 2003 IEEE Trans. Antennas Propag 51 2572

  • [1] Zhao Zhen-Yu, Liu Hai-Wen, Chen Zhi-Jiao, Dong Liang, Chang Le, Gao Meng-Ying. Dual circularly polarized Fabry-Perot antenna with metamaterial-based corner reflector for high gain and high aperture efficiency. Acta Physica Sinica, 2022, 71(4): 044101. doi: 10.7498/aps.71.20211914
    [2] Dual Circularly Polarized Fabry-Perot Antenna with Metamaterial-based Corner Reflector for High Gain and High Aperture Efficiency. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211914
    [3] Zhao Yu-Ting, Li Ying-Song, Yang Guo-Hui. A novel wideband absorptive frequency selective surface based on circuit analog absorber. Acta Physica Sinica, 2020, 69(19): 198101. doi: 10.7498/aps.69.20200641
    [4] Han Ya-Juan, Zhang Jie-Qiu, Li Yong-Feng, Wang Jia-Fu, Qu Shao-Bo, Zhang An-Xue. 360 scanning multi-beam antenna based on spoof surface plasmon polaritons. Acta Physica Sinica, 2016, 65(14): 147301. doi: 10.7498/aps.65.147301
    [5] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng. Broadband circularly polarized high-gain antenna design based on single-layer reflecting metasurface. Acta Physica Sinica, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [6] Liu Hai-Wen, Zhan Xin, Ren Bao-Ping. Design of triple bandpass frequency selective surface in terahertz wave band for radio astronomy. Acta Physica Sinica, 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [7] Yuan Zi-Dong, Gao Jun, Cao Xiang-Yu, Yang Huan-Huan, Yang Qun, Li Wen-Qiang, Shang Kai. A novel frequency selective surface with stable performance and its application in microstrip antenna. Acta Physica Sinica, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [8] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Zheng Qiu-Rong, Li Si-Jia, Li Wen-Qiang, Yang Qun. A broad-band gain improvement and wide-band, wide-angle low radar cross section microstrip antenna. Acta Physica Sinica, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [9] Diao Zhi-Hui, Huang Wen-Bin, Deng Shu-Peng, Liu Yong-Gang, Peng Zeng-Hui, Yao Li-Shuang, Xuan Li. Distributed-feedback laser based on low-scattering and high-gain holographic polymer dispersed liquid crystal grating. Acta Physica Sinica, 2013, 62(3): 034202. doi: 10.7498/aps.62.034202
    [10] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [11] Wu Yang, Xu Zhou, Xu Yong, Jin Xiao, Chang An-Bi, Li Zheng-Hong, Huang Hua, Liu Zhong, Luo Xiong, Ma Qiao-Sheng, Tang Chuan-Xiang. Experimental study on a high power microwave amplifier driven by low rf power. Acta Physica Sinica, 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [12] Fan Jing, Cai Guang-Yu. Tunability in metamaterials with mechanical rotation. Acta Physica Sinica, 2010, 59(12): 8574-8578. doi: 10.7498/aps.59.8574
    [13] Fan Jing, Cai Guang-Yu. Broadband lefthanded metamaterial absorber based on split ring resonator and wire array. Acta Physica Sinica, 2010, 59(9): 6084-6088. doi: 10.7498/aps.59.6084
    [14] Yang Rui, Xie Yong-Jun, Li Xiao-Feng, Jiang Jun, Wang Yuan-Yuan, Wang Rui. Floquet mode analysis on the resonance behavior of metamaterials. Acta Physica Sinica, 2009, 58(2): 901-907. doi: 10.7498/aps.58.901
    [15] Yang Rui, Xie Yong-Jun, Wang Yuan-Yuan, Fu Huan-Zhan. Slow wave propagation in metamaterial based nonradiative dielectric waveguides and its application. Acta Physica Sinica, 2008, 57(9): 5513-5518. doi: 10.7498/aps.57.5513
    [16] Shi Wei, Wang Xin-Mei, Hou Lei, Xu Ming, Liu Zheng. Design and performanec of a high-gain double-layer GaAs photoconductive switch. Acta Physica Sinica, 2008, 57(11): 7185-7189. doi: 10.7498/aps.57.7185
    [17] Ai Fen, Bai Yang, Xu Fang, Qiao Li-Jie, Zhou Ji. Research on the tunable left-handed properties of split-ring resonator with ferrite substrate. Acta Physica Sinica, 2008, 57(7): 4189-4194. doi: 10.7498/aps.57.4189
    [18] Zhang Fu-Li, Zhao Xiao-Peng. Tunable split ring resonator and its effect. Acta Physica Sinica, 2007, 56(8): 4661-4667. doi: 10.7498/aps.56.4661
    [19] Yao Yuan, Zhao Xiao-Peng, Zhao Jing, Zhou Xin. Microwave transmission behavior of the single dissymmetrical hexagonal split-ring resonators. Acta Physica Sinica, 2006, 55(12): 6435-6440. doi: 10.7498/aps.55.6435
    [20] Kang Lei, Zhao Qian, Zhao Xiao-Peng. The defect effect in the two-dimensional negative permeability material. Acta Physica Sinica, 2004, 53(10): 3379-3383. doi: 10.7498/aps.53.3379
Metrics
  • Abstract views:  6646
  • PDF Downloads:  423
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2015
  • Accepted Date:  31 July 2015
  • Published Online:  05 December 2015

/

返回文章
返回