Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantitative research into the influence of slider-disk contact force on the information intensity of the magnetic recording layer

Liu Yu-Liang Chen Zhi-Gang Sun Da-Xing Zhang Guang-Yu

Citation:

Quantitative research into the influence of slider-disk contact force on the information intensity of the magnetic recording layer

Liu Yu-Liang, Chen Zhi-Gang, Sun Da-Xing, Zhang Guang-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to achieve the requirement of rapid growth of the magnetic storage density, the slider-disk spacing needs to be reduced to less than 2 nm. However, the slider-disk contact can easily occur within such a narrow spacing, and eventually result in the loss of the stored data in the magnetic recording film, i.e., demagnetization of the magnetic disk. Therefore, research into the magnetomechanical relationship related to the slider-disk contact demagnetization is significantly important to identify the demagnetization mechanism and further improve the anti-demagnetization performance of the magnetic disk. In this study, the nanoscratch experiment and the magnetic force microscope technology are used to investigate the magnetomechanical behavior induced by the slider-disk contact. And according to the phase imaging principle of the magnetic force microscope, the relationship between the information intensity of the magnetic recording layer and the magnetic contrast measured by the magnetic force microscope is found. Thus, a quantitative analysis method is proposed, which is different from the previous qualitative observation of the magnetic domain change. Experimental results show that the critical demagnetization load during the slider-disk contact is 120 up N. When the slider-disk contact force exceeds the critical demagnetization load, the increase of slider-disk contact force can lead to the decrease of the information intensity of the magnetic recording layer. And the decay rate of the information intensity will be rapidly enhanced after the slider-disk contact force reaches 380 up N. Moreover, the variation trend of the information intensity with the depth of the residual scratch is the same as that of the information intensity with the slider-disk contact force. Specially, before the slider penetrates the hard carbon layer of the magnetic disk, the slider-disk contact demagnetization still may occur, corresponding to the load cases from 120 up N to 200 up N. In addition, for any slider-disk contact force, the area of the surface damage of the hard carbon layer is always greater than that of the demagnetization of the magnetic recording layer. This phenomenon is related to the elasto-plastic force fields in the hard carbon layer and the magnetic recording layer. Moreover, when the slider repeatedly scratches the same location on the surface of the magnetic disk, the information intensity of the magnetic recording layer will decrease with the increase of scratching number. After the scratching number is beyond 20, the elastic shakedown status may occur in the magnetic recording layer, and correspondingly, the information intensity of the magnetic recording layer can be close to a constant value. This result is derived from the work hardening process during the slider-disk repeatedly scratching.
      Corresponding author: Liu Yu-Liang, liuyuliang8301@163.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. HIT.NSRIF.2012037), and the Chinese Scholarship Council (Grant No. CSC[2011]3005).
    [1]

    Pan D, Yan H, Jiang H Y 2014 Acta Phys. Sin. 63 128104 (in Chinese) [潘登, 闫辉, 姜洪源 2014 物理学报 63 128104]

    [2]

    Ao H R, Chen Y, Dong M, Jiang H Y 2014 Acta Phys. Sin.63 34401 (in Chinese) [敖宏瑞, 陈漪, 董明, 姜洪源 2014 物理学报 63 34401]

    [3]

    Wang F, Xu X H 2014 Chin. Phys. B 23 36802

    [4]

    Greaves S, Kanai Y, Muraoka H 2009 IEEE Trans. Magn. 45 3823

    [5]

    Dahl J B, Bogy D B 2014 Tribol. Lett. 54 35

    [6]

    Liu B, Zhang M S, Yu S K, Hua W, Ma Y S, Zhou W D, Man Y J 2009 IEEE Trans. Magn. 45 899

    [7]

    Zheng J, Bogy D B 2010 Tribol. Lett. 38 283

    [8]

    Chen C Y, Bogy D B, Bhatia C S 2001 Tribol. Lett. 10 195

    [9]

    Liu Y L, He J, Lou J, Bogy D B, Zhang G Y 2014 Microsyst. Technol. 20 1541

    [10]

    Jeong T G, Bogy D B 1995 IEEE Trans. Magn. 31 1007

    [11]

    Furukawa M, Xu J, Shimizu Y, Kato Y 2008 IEEE Trans. Magn. 44 3633

    [12]

    Xu J, Furukawa M, Shimizu Y, Kato Y 2010 Microsyst. Technol. 45 893

    [13]

    Lee S, He M, Yeo C D, Abo G, Hong Y K, You J H 2012 J. Appl. Phys. 112 084901

    [14]

    Liu Y L, Xiong S M, Lou J, Bogy D B, Zhang G Y 2014 J. Appl. Phys. 115 17B725

    [15]

    Yang L, Diao D F 2014 Tribol. Lett. 54 287

    [16]

    Guo Z Z, Hu X B 2013 Acta Phys. Sin. 62 057501 (in Chinese) [郭子政, 胡旭波 2013 物理学报 62 057501]

    [17]

    Xu J, Furukawa M, Nakamura A, Honda M 2009 IEEE Trans. Magn. 45 893

    [18]

    Lee S C, Hong S Y, Kim N Y, Ferber J, Che X D Storm B D 2009 ASME J. Tribol. 131 011904

    [19]

    Vakis A, Lee S C, Polycarpou A A 2009 IEEE Trans. Magn. 45 4966

    [20]

    Yang L, Diao D F, Zhan W 2012 Tribol. Lett. 46 329

    [21]

    Katta R R, Polycarpou A A, Lee S C, Suk M 2010 ASME J. Tribol. 132 021902

    [22]

    Tran T N, Liu G R, Xuan H N, Thoi T N 2010 Int. J. Number Meth. Eng. 82 917

  • [1]

    Pan D, Yan H, Jiang H Y 2014 Acta Phys. Sin. 63 128104 (in Chinese) [潘登, 闫辉, 姜洪源 2014 物理学报 63 128104]

    [2]

    Ao H R, Chen Y, Dong M, Jiang H Y 2014 Acta Phys. Sin.63 34401 (in Chinese) [敖宏瑞, 陈漪, 董明, 姜洪源 2014 物理学报 63 34401]

    [3]

    Wang F, Xu X H 2014 Chin. Phys. B 23 36802

    [4]

    Greaves S, Kanai Y, Muraoka H 2009 IEEE Trans. Magn. 45 3823

    [5]

    Dahl J B, Bogy D B 2014 Tribol. Lett. 54 35

    [6]

    Liu B, Zhang M S, Yu S K, Hua W, Ma Y S, Zhou W D, Man Y J 2009 IEEE Trans. Magn. 45 899

    [7]

    Zheng J, Bogy D B 2010 Tribol. Lett. 38 283

    [8]

    Chen C Y, Bogy D B, Bhatia C S 2001 Tribol. Lett. 10 195

    [9]

    Liu Y L, He J, Lou J, Bogy D B, Zhang G Y 2014 Microsyst. Technol. 20 1541

    [10]

    Jeong T G, Bogy D B 1995 IEEE Trans. Magn. 31 1007

    [11]

    Furukawa M, Xu J, Shimizu Y, Kato Y 2008 IEEE Trans. Magn. 44 3633

    [12]

    Xu J, Furukawa M, Shimizu Y, Kato Y 2010 Microsyst. Technol. 45 893

    [13]

    Lee S, He M, Yeo C D, Abo G, Hong Y K, You J H 2012 J. Appl. Phys. 112 084901

    [14]

    Liu Y L, Xiong S M, Lou J, Bogy D B, Zhang G Y 2014 J. Appl. Phys. 115 17B725

    [15]

    Yang L, Diao D F 2014 Tribol. Lett. 54 287

    [16]

    Guo Z Z, Hu X B 2013 Acta Phys. Sin. 62 057501 (in Chinese) [郭子政, 胡旭波 2013 物理学报 62 057501]

    [17]

    Xu J, Furukawa M, Nakamura A, Honda M 2009 IEEE Trans. Magn. 45 893

    [18]

    Lee S C, Hong S Y, Kim N Y, Ferber J, Che X D Storm B D 2009 ASME J. Tribol. 131 011904

    [19]

    Vakis A, Lee S C, Polycarpou A A 2009 IEEE Trans. Magn. 45 4966

    [20]

    Yang L, Diao D F, Zhan W 2012 Tribol. Lett. 46 329

    [21]

    Katta R R, Polycarpou A A, Lee S C, Suk M 2010 ASME J. Tribol. 132 021902

    [22]

    Tran T N, Liu G R, Xuan H N, Thoi T N 2010 Int. J. Number Meth. Eng. 82 917

Metrics
  • Abstract views:  4692
  • PDF Downloads:  227
  • Cited By: 0
Publishing process
  • Received Date:  02 July 2015
  • Accepted Date:  27 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回