Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Granular axial flow characteristics in a grinding area studied by discrete element method

Han Yan-Long Jia Fu-Guo Zeng Yong Wang Ai-Fang

Citation:

Granular axial flow characteristics in a grinding area studied by discrete element method

Han Yan-Long, Jia Fu-Guo, Zeng Yong, Wang Ai-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Granular grinding is one of the most important unit operations used in a wide variety of industries. Examples can be found in the food industry, for instance, rice processing, etc.. The performance of grinding can be characterized by the particle flow process. Thus in order to study the stable flow process of particles during grinding, we must establish a discrete element model (DEM) of granular axial flow in the grinding area between the grinding roller and the screen drum. DEM is a numerical method used for modelling the mechanical behaviour of granular materials. When DEM is used in grinding, the particle motion is controlled by contact models that are governed by physical laws. Using EDEM software, the process of grinding can be simulated and analyzed. The simulation system chooses continuous feeding; after a period of time, it reaches a steady flow. Research results show that the uneven distribution of particle flow density (PFD) is caused by the axial movement difference of particles in the grinding area. The form, flow rate and distribution of granular axial flow are influenced by static friction coefficient difference between particles and screen drum. Axial mean square deviation of single particles in the grinding area is positively correlated with the square of time, which follows a “super” diffusive behavior defined by some studies. By an overall consideration of the grinding area, we find that the axial average velocities increase, however, the average velocities that are synthesized by three-axis velocities gradually decrease along the axial direction. This is because in a different axial position with different PFI, the PFI plays the key role in energy transfer. More energy will be transferred between high PFI particles that may cause high particle velocity. We also find that the fluctuation velocity square of particles presents the trend of first increasing then decreasing and finally increasing along the axial direction. The difference between PFIs is also elucidated by the total energy dissipation in each collisional energy level for a single particle. Results show that the single particle can endure intenser collision, more energy loss in anterior half segment than those in the second half of the grinding area. As mentioned above, the particle flow was analyzed in terms of particle flow intensity, particle velocity, collision energy, collision number, and so on. Some experimental results confirm the validity of the simulation. The simulation reflects the stable flow characteristics of particles in the grinding area and provides bases and references for further studying the product quality control and grinding equipment parameters optimization.
      Corresponding author: Jia Fu-Guo, jfg204@163.com
    • Funds: Project supported by the National Science Foundation of Heilongjiang Province, China (Grant No. E201322), the Harbin Foundation for Outstanding Academic Leaders, China (Grant No. RC2013XK006004), and the Application Technology Research and Development Project of Harbin, China (Grant No. 2013DB2BG005).
    [1]

    Sun Q C, Wang G Q 2008 Adv. Mech. 38 87 (in Chinese) [孙其诚, 王光谦 2008 力学进展 38 87]

    [2]

    Zhao Y Z, Jiang M Q, Zheng J Y 2009 Acta Phys. Sin. 58 1812 (in Chinese) [赵永志, 江茂强, 郑津洋 2009 物理学报 58 1812]

    [3]

    Tahvildarian P, Mozaffari F E, Upreti S 2013 Particuology 11 619

    [4]

    Sinnott M D, Cleary P W 2015 Miner. Eng. 74 163

    [5]

    Wang M H, Yang R Y, Yu A B 2012 Powder Technol. 223 83

    [6]

    Pasha M, Hassanpour A, Ahmadian H, Tan H S, Bayly A, Ghadiri M 2015 Powder Technol. 270 569

    [7]

    Ma Z, Li Y M, Xu L Z 2013 Trans. CSAM. 44 22 (in Chinese) [马征, 李耀明, 徐立章 2013 农业机械学报 44 22]

    [8]

    Jayasundara C T, Yang R Y, Yu A B, Rubenstein J 2010 Int. J. Miner. Process. 96 27

    [9]

    Cleary P W 2006 Appl. Math. Model. 30 1343

    [10]

    Cunha E R D, Carvalho R M D, Tavares L M 2013 Miner. Eng. 43 85

    [11]

    Morrison R D, Cleary P W, sinnott M D 2009 Miner. Eng. 22 665

    [12]

    Lu G, Third J R, Muller C R 2014 Particuology 12 44

    [13]

    Parker D J, Djkstra A E, Martin T W, Seville J P K 1997 Chem. Eng. Sci. 52 2011

    [14]

    Third J R, Scott D M, Scott S A 2010 Powder Technol. 203 510

    [15]

    Zhu Y Y 1999 Rice Processing and Comprehensive Utilization(Beijing:China Light Industry Press) p149 (in Chinese) [朱永义 1999 稻谷加工与综合利用(北京: 中国轻工业出版社)第149页]

    [16]

    Hu J P, Guo K, Zhou C J, Hou C 2014 Trans. CSAM. 45 61 (in Chinese) [胡建平, 郭坤, 周春健, 侯冲 2014 农业机械学报 45 61]

    [17]

    Chen J, Zhou H, Zhao Z, Li Y M, Gong Z Q 2011 Trans. CSAM. 42 79 (in Chinese) [陈进, 周韩, 赵湛, 李耀明, 龚智强 2011 农业机械学报 42 79]

    [18]

    Han Y L, Jia F G, Tang Y R, Liu Y, Zhang Q 2014 Acta Phys. Sin. 63 174501 (in Chinese) [韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强 2014 物理学报 63 174501]

    [19]

    Zhou X Q 2011 Rice Processing Technology and Equipment(Beijing:China Light Industry Press) p163 (in Chinese) [周显青 2011 稻谷加工工艺与设备(北京: 中国轻工业出版社)第163页]

    [20]

    Khanal M, Jayasundara C T 2014 Particuology 16 54

    [21]

    Jayasundara C T, Yang R Y, Yu A B, Curry D 2008 Chem. Eng. J. 135 103

    [22]

    Yang R Y, Yu A B, Mcelroy L, Bao J 2008 Powder Technol. 188 170

    [23]

    Yang R Y, Jayasundara C T, Yu A B, Curry D 2006 Miner. Eng. 19 984

    [24]

    Meng F J, Liu K 2014 Acta Phys. Sin. 63 134502 (in Chinese) [孟凡净, 刘焜 2014 物理学报 63 134502]

  • [1]

    Sun Q C, Wang G Q 2008 Adv. Mech. 38 87 (in Chinese) [孙其诚, 王光谦 2008 力学进展 38 87]

    [2]

    Zhao Y Z, Jiang M Q, Zheng J Y 2009 Acta Phys. Sin. 58 1812 (in Chinese) [赵永志, 江茂强, 郑津洋 2009 物理学报 58 1812]

    [3]

    Tahvildarian P, Mozaffari F E, Upreti S 2013 Particuology 11 619

    [4]

    Sinnott M D, Cleary P W 2015 Miner. Eng. 74 163

    [5]

    Wang M H, Yang R Y, Yu A B 2012 Powder Technol. 223 83

    [6]

    Pasha M, Hassanpour A, Ahmadian H, Tan H S, Bayly A, Ghadiri M 2015 Powder Technol. 270 569

    [7]

    Ma Z, Li Y M, Xu L Z 2013 Trans. CSAM. 44 22 (in Chinese) [马征, 李耀明, 徐立章 2013 农业机械学报 44 22]

    [8]

    Jayasundara C T, Yang R Y, Yu A B, Rubenstein J 2010 Int. J. Miner. Process. 96 27

    [9]

    Cleary P W 2006 Appl. Math. Model. 30 1343

    [10]

    Cunha E R D, Carvalho R M D, Tavares L M 2013 Miner. Eng. 43 85

    [11]

    Morrison R D, Cleary P W, sinnott M D 2009 Miner. Eng. 22 665

    [12]

    Lu G, Third J R, Muller C R 2014 Particuology 12 44

    [13]

    Parker D J, Djkstra A E, Martin T W, Seville J P K 1997 Chem. Eng. Sci. 52 2011

    [14]

    Third J R, Scott D M, Scott S A 2010 Powder Technol. 203 510

    [15]

    Zhu Y Y 1999 Rice Processing and Comprehensive Utilization(Beijing:China Light Industry Press) p149 (in Chinese) [朱永义 1999 稻谷加工与综合利用(北京: 中国轻工业出版社)第149页]

    [16]

    Hu J P, Guo K, Zhou C J, Hou C 2014 Trans. CSAM. 45 61 (in Chinese) [胡建平, 郭坤, 周春健, 侯冲 2014 农业机械学报 45 61]

    [17]

    Chen J, Zhou H, Zhao Z, Li Y M, Gong Z Q 2011 Trans. CSAM. 42 79 (in Chinese) [陈进, 周韩, 赵湛, 李耀明, 龚智强 2011 农业机械学报 42 79]

    [18]

    Han Y L, Jia F G, Tang Y R, Liu Y, Zhang Q 2014 Acta Phys. Sin. 63 174501 (in Chinese) [韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强 2014 物理学报 63 174501]

    [19]

    Zhou X Q 2011 Rice Processing Technology and Equipment(Beijing:China Light Industry Press) p163 (in Chinese) [周显青 2011 稻谷加工工艺与设备(北京: 中国轻工业出版社)第163页]

    [20]

    Khanal M, Jayasundara C T 2014 Particuology 16 54

    [21]

    Jayasundara C T, Yang R Y, Yu A B, Curry D 2008 Chem. Eng. J. 135 103

    [22]

    Yang R Y, Yu A B, Mcelroy L, Bao J 2008 Powder Technol. 188 170

    [23]

    Yang R Y, Jayasundara C T, Yu A B, Curry D 2006 Miner. Eng. 19 984

    [24]

    Meng F J, Liu K 2014 Acta Phys. Sin. 63 134502 (in Chinese) [孟凡净, 刘焜 2014 物理学报 63 134502]

  • [1] Xiao You-Peng, Wang Huai-Ping, Feng Lin. Numerical simulation of germanium selenide heterojunction solar cell. Acta Physica Sinica, 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [2] Song Yan, Jiang Hong-Xiang, Zhao Jiu-Zhou, He Jie, Zhang Li-Li, Li Shi-Xin. Numerical simulations of solidification microstructure evolution process for commercial-purity aluminum alloys inoculated by Al-Ti-B refiner. Acta Physica Sinica, 2021, 70(8): 086402. doi: 10.7498/aps.70.20201431
    [3] Cheng Hao, Han Pei-Feng, Su You-Wen. Sliding and accumulation characteristics of loose materials and its influencing factors based on discrete element method. Acta Physica Sinica, 2020, 69(16): 164501. doi: 10.7498/aps.69.20200223
    [4] Zhu Bing-Hui, Yang Ai-Xiang, Niu Shu-Tong, Chen Xi-Meng, Zhou Wang Shao, Jian-Xiong. Simulation analyses of 100-keV as well as low and high energy protons through insulating nanocapillary. Acta Physica Sinica, 2018, 67(1): 013401. doi: 10.7498/aps.67.20171701
    [5] Zhao Zi-Yuan, Li Yu-Jun, Wang Fu-Shuai, Zhang Qi, Hou Mei-Ying, Li Wen-Hui, Ma Gang. Elastic behavior of glass-rubber mixed particles system. Acta Physica Sinica, 2018, 67(10): 104502. doi: 10.7498/aps.67.20172772
    [6] Li Ping, Xu Yu-Tang. Monte Carlo simulation of time-dependent dielectric breakdown of oxide caused by migration of oxygen vacancies. Acta Physica Sinica, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [7] Yan Da-Dong, Zhang Xing-Hua. Recent development on the theory of polymer crystallization. Acta Physica Sinica, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [8] Chen Qiong, Wang Qing-Hua, Zhao Chuang, Zhang Qi, Hou Mei-Ying. Mechanical response study of glass-rubber particle mixtures. Acta Physica Sinica, 2015, 64(15): 154502. doi: 10.7498/aps.64.154502
    [9] Meng Fan-Jing, Liu Kun. Velocity fluctuation and self diffusion character in a dense granular sheared flow studied by discrete element method. Acta Physica Sinica, 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [10] Han Yan-Long, Jia Fu-Guo, Tang Yu-Rong, Liu Yang, Zhang Qiang. Influence of granular coefficient of rolling friction on accumulation characteristics. Acta Physica Sinica, 2014, 63(17): 174501. doi: 10.7498/aps.63.174501
    [11] Zhong Chun-Liang, Geng Kui-Wei, Yao Ruo-He. S-shaped J-V characteristic of a-Si:H/c-Si heterojunction solar cell. Acta Physica Sinica, 2010, 59(9): 6538-6544. doi: 10.7498/aps.59.6538
    [12] Liu Yao-Min, Liu Zhong-Liang, Huang Ling-Yan. Simulation of frost formation process on cold plate based on fractal theory combined with phase change dynamics. Acta Physica Sinica, 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [13] Zhao Yong-Zhi, Jiang Mao-Qiang, Xu Ping, Zheng Jin-Yang. Discrete element simulation of the microscopic mechanical structure in sandpile. Acta Physica Sinica, 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [14] Yi Chen-Hong, Mu Qing-Song, Miao Tian-De. Discrete element method simulation on the force chains in the two-dimensional granular system under gravity. Acta Physica Sinica, 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [15] Peng Guang-Han, Sun Di-Hua, He Heng-Pan. Two-car following model of traffic flow and numerical simulation. Acta Physica Sinica, 2008, 57(12): 7541-7546. doi: 10.7498/aps.57.7541
    [16] Feng Wei, Gao Zhong-Kuo. Simulation of physical properties of organic photovoltaic cell. Acta Physica Sinica, 2008, 57(4): 2567-2573. doi: 10.7498/aps.57.2567
    [17] Yi Chen-Hong, Mu Qing-Sun, Miao Tian-De. The DEM simulation for two-dimension granular system with point defects. Acta Physica Sinica, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [18] Lai Guo-Jun, Liu Pu-Kun. Simulation and design of a W-band gyrotron traveling wave amplifier. Acta Physica Sinica, 2006, 55(1): 321-325. doi: 10.7498/aps.55.321
    [19] Lu Yang, Wang Fan, Zhu Chang-Sheng, Wang Zhi-Ping. Simulation of multiple grains for isothermal solidification of binary alloy using phase-field model. Acta Physica Sinica, 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [20] Wang Pei-Lin, Ding Tian-Hua, Cai Xun. . Acta Physica Sinica, 2002, 51(9): 2109-2112. doi: 10.7498/aps.51.2109
Metrics
  • Abstract views:  4707
  • PDF Downloads:  249
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2015
  • Accepted Date:  03 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回