Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of the surface albedo on short-wave infrared detection of atmospheric CO2

Chen Jie Zhang Chun-Min Wang Ding-Yi Zhang Xing-Ying Wang Shu-Peng Li Yan-Fen Liu Dong-Dong Rong Piao

Citation:

Effects of the surface albedo on short-wave infrared detection of atmospheric CO2

Chen Jie, Zhang Chun-Min, Wang Ding-Yi, Zhang Xing-Ying, Wang Shu-Peng, Li Yan-Fen, Liu Dong-Dong, Rong Piao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The greenhouse gas carbon dioxide, for which short-wave infrared remote sensing detection is carried out by using satellite sensors to measure the Earth's atmosphere scattering solar radiation, and makes use of the inversion algorithm to achieve measurements. Most of the solar radiation enter the satellite sensors after surface reflection, so the surface albedo which reflects the surface features is one of the important parameters which affect the accuracy of the detection. Aiming at the great demands of high precision carbon dioxide for greenhouse gas, this study first investigate the effects of the Earth's surface albedo on the observed spectra. Simulation results show that the increase in the surface albedo will enhance the observed spectral intensity, especially larger in the O2-A band than in the 1.6 μm band. In other words, the surface albedo has a greater impact on O2-A ban. In the actual satellite inversio, the surface types of actual observation pointare uncertain, which will result in the error of surface albedo. Effect of surface albedo on the inverted XCO2 is analyzed when the surface albedo is changed by changing the type of surfac. Two observation cases are analyzed in detail. One is on April 23, 2009 for the desert surface, and another on May 21, 2013 for the grass surfac. Results show that when the O2-A band surface albedo approximates to the real surface albedo valu, the relative error of the inverted XCO2 is the smaller. If the relative changes of the O2-A band surface albedo exceed 0.25 in the grass surfac or 0.35 in the desert surface, the relative error of the inverted XCO2 will be greater than 1%, not satisfying the design requirement of the inversion system. In contrast, the changesin 1.6 μm band surface albedo have negligible effect on the inverted XCO2. This study shows the importance of surface albedo in the process of satellite remote sensin, and provides an important theoretical basis and guidance for improving the accuracy of remote sensing detectio. All these are significantly contributed to the hyperspectral satellite observation of the greenhouse gas, the investigation of global CO2 distributions, and the prediction and monitoring of the climate change.
      Corresponding author: Zhang Chun-Min, zcm@mail.xjtu.edu.cn
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant Nos. 32-Y30B08-9001-13/15, E310/1112), the National High Technology Research and Development Program of China (Grant Nos. 2011AA12 A104, 2012AA121101), the National Natural Science Foundation of China (Grant Nos. 61275184, 41530422).
    [1]

    Ballantyne A P, Alden C B, Miller J B 2012 Nature 488 70

    [2]

    Liu Y, Lv D R, Chen H B 2011 Remote Sens. Technol. Appl. 26 247 (in Chinese) [刘毅, 吕达仁, 陈洪滨 2011 遥感技术与应用 26 247]

    [3]

    Qu Y, Zhang C M, Wang D Y 2013 Int. J. Remote Sens. 34 3938

    [4]

    He J, Zhang C M 2005 J. Opt. A-Pure Appl. Op. 7 613

    [5]

    Bousquet P, Peylin P, Ciais P 2000 Science 290 1342

    [6]

    Harries J E, Russell J E, Hanafin J A 2005 B Am. Meteorol. Soc. 86 945

    [7]

    Ye H H, Wang X H, Wu J, Fang Y H, Xiong W, Cui F X 2011 J Atmos. Environ. Opt. 06 208 (in Chinese) [叶函函, 王先华, 吴军, 方勇华, 熊伟, 崔方晓 2011 大气与环境光学学报 06 208]

    [8]

    Wunch D, Wennberg P O, Toon G C 2011 Atmos. Chem. Phys. 11 12317

    [9]

    Qu Y, Zhang C M, Wang D Y 2013 Int. J. Remote Sens. 34 3938

    [10]

    Liang S L 2014 Global land table feature parameters (GLASS) product algorithm, verification and analysis(Beijing:Higher Education Press) p84 (in Chinese) [梁顺林 2014 全球陆表特征参量(GLASS)产品算法, 验证与分析(北京:高等教育出版社) 第84页]

    [11]

    Schaaf C B, Gao F, Strahler A H 2002 Remote Sens. Environ. 83 135

    [12]

    Baker D F, Doney S C, Schimel D S 2006 Tellus. B 58 359

    [13]

    Feng L, Palmer P I, Bösch H 2009 Atmos. Chemphys. 9 2619

    [14]

    Chevallier F, Bréon F M, Rayner P J 2007 J. Geophys. Res. 112 139

    [15]

    Houweling S, Hartmann W, Aben I 2005 Atmos. Chemphys. 5 3003

    [16]

    Rayner P J, O'Brien D M 2001 Geophys. Res. Lett. 28 175

    [17]

    Zhang Y F, Wang X P, Pan Y X 2011 J. Desert Res. 05 1141 (in Chinese) [张亚峰, 王新平, 潘颜霞 2011 中国沙漠 05 1141]

    [18]

    Sun Z A, WENG D M 1994 J. Appl. Meteor. Sci. 04 394 (in Chinese) [孙治安, 翁笃鸣 1994 应用气象学报 04 394]

    [19]

    Feng C, Gu S, Zhao L 2010 Plateau Meteor. 01 70 (in Chinese) [冯超, 古松, 赵亮 2010 高原气象 01 70]

    [20]

    Hu L Q, Li J F 1993 Arid Zone Res. 01 33 (in Chinese) [胡列群, 李江风 1993 干旱区研究 01 33]

    [21]

    Yao T, Zhang Q 2014 Acta Phys. Sin. 63 084601 (in Chinese) [姚彤, 张强 2014 物理学报 63 084601]

    [22]

    Hild L, Richter A, Rozanov V 2002 Adv. Space Res. 29 1685

    [23]

    Shi G Y 2007 Atmospheric Radiation Science (Beijing:Science Press) p203 (in Chinese) [石广玉. 大气辐射学(北京:科学出版社) 第203页]

  • [1]

    Ballantyne A P, Alden C B, Miller J B 2012 Nature 488 70

    [2]

    Liu Y, Lv D R, Chen H B 2011 Remote Sens. Technol. Appl. 26 247 (in Chinese) [刘毅, 吕达仁, 陈洪滨 2011 遥感技术与应用 26 247]

    [3]

    Qu Y, Zhang C M, Wang D Y 2013 Int. J. Remote Sens. 34 3938

    [4]

    He J, Zhang C M 2005 J. Opt. A-Pure Appl. Op. 7 613

    [5]

    Bousquet P, Peylin P, Ciais P 2000 Science 290 1342

    [6]

    Harries J E, Russell J E, Hanafin J A 2005 B Am. Meteorol. Soc. 86 945

    [7]

    Ye H H, Wang X H, Wu J, Fang Y H, Xiong W, Cui F X 2011 J Atmos. Environ. Opt. 06 208 (in Chinese) [叶函函, 王先华, 吴军, 方勇华, 熊伟, 崔方晓 2011 大气与环境光学学报 06 208]

    [8]

    Wunch D, Wennberg P O, Toon G C 2011 Atmos. Chem. Phys. 11 12317

    [9]

    Qu Y, Zhang C M, Wang D Y 2013 Int. J. Remote Sens. 34 3938

    [10]

    Liang S L 2014 Global land table feature parameters (GLASS) product algorithm, verification and analysis(Beijing:Higher Education Press) p84 (in Chinese) [梁顺林 2014 全球陆表特征参量(GLASS)产品算法, 验证与分析(北京:高等教育出版社) 第84页]

    [11]

    Schaaf C B, Gao F, Strahler A H 2002 Remote Sens. Environ. 83 135

    [12]

    Baker D F, Doney S C, Schimel D S 2006 Tellus. B 58 359

    [13]

    Feng L, Palmer P I, Bösch H 2009 Atmos. Chemphys. 9 2619

    [14]

    Chevallier F, Bréon F M, Rayner P J 2007 J. Geophys. Res. 112 139

    [15]

    Houweling S, Hartmann W, Aben I 2005 Atmos. Chemphys. 5 3003

    [16]

    Rayner P J, O'Brien D M 2001 Geophys. Res. Lett. 28 175

    [17]

    Zhang Y F, Wang X P, Pan Y X 2011 J. Desert Res. 05 1141 (in Chinese) [张亚峰, 王新平, 潘颜霞 2011 中国沙漠 05 1141]

    [18]

    Sun Z A, WENG D M 1994 J. Appl. Meteor. Sci. 04 394 (in Chinese) [孙治安, 翁笃鸣 1994 应用气象学报 04 394]

    [19]

    Feng C, Gu S, Zhao L 2010 Plateau Meteor. 01 70 (in Chinese) [冯超, 古松, 赵亮 2010 高原气象 01 70]

    [20]

    Hu L Q, Li J F 1993 Arid Zone Res. 01 33 (in Chinese) [胡列群, 李江风 1993 干旱区研究 01 33]

    [21]

    Yao T, Zhang Q 2014 Acta Phys. Sin. 63 084601 (in Chinese) [姚彤, 张强 2014 物理学报 63 084601]

    [22]

    Hild L, Richter A, Rozanov V 2002 Adv. Space Res. 29 1685

    [23]

    Shi G Y 2007 Atmospheric Radiation Science (Beijing:Science Press) p203 (in Chinese) [石广玉. 大气辐射学(北京:科学出版社) 第203页]

  • [1] Deng Luan, Du Bao, Cai Hong-Bo, Kang Dong-Guo, Zhu Shao-Ping. Self-generated magnetic field in plasma reconstructed by using inverse Abel transformation in proton radiography. Acta Physica Sinica, 2022, 71(24): 245203. doi: 10.7498/aps.71.20221848
    [2] Qu Ke, Piao Sheng-Chun, Zhu Feng-Qin. A noval method of constructing shallow water sound speed profile based on dynamic characteristic of internal tides. Acta Physica Sinica, 2019, 68(12): 124302. doi: 10.7498/aps.68.20181867
    [3] Zhou Yan-Ling, Fan Jun, Wang Bin. Inversion for acoustic parameters of plastic polymer target in water. Acta Physica Sinica, 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [4] Xu Min, Shen Jin, Huang Yu, Xu Ya-Nan, Zhu Xin-Jun, Wang Ya-Jing, Liu Wei, Gao Ming-Liang. Weighting inversion of dynamic light scattering based on particle-size information distribution character. Acta Physica Sinica, 2018, 67(13): 134201. doi: 10.7498/aps.67.20172377
    [5] Duan Xiao-Liang, Wang Yi-Bo, Yang Hui-Zhu. Regularized seismic velocity inversion based on inverse scattering theory. Acta Physica Sinica, 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [6] Li Lun, Wu Xiong-Bin. Multiple sites HFSWR ocean shallow water depth and current inversion. Acta Physica Sinica, 2014, 63(11): 118404. doi: 10.7498/aps.63.118404
    [7] Li Lun, Wu Xiong-Bin, Xu Xing-An. Optimization method for extracting ocean wave parameters from HFSWR. Acta Physica Sinica, 2014, 63(3): 038403. doi: 10.7498/aps.63.038403
    [8] Yao Tong, Zhang Qiang. Study on land-surface albedo over different types of underlying surfaces in North China. Acta Physica Sinica, 2014, 63(8): 089201. doi: 10.7498/aps.63.089201
    [9] Liu Cheng, Bai Wen-Guang, Zhang Peng, Sun You-Wen, Si Fu-Qi. The inverse method of carbon monoxide from satellite measurement and the result analysis. Acta Physica Sinica, 2013, 62(3): 030704. doi: 10.7498/aps.62.030704
    [10] Cheng Si-Yang, Xu Liang, Gao Min-Guang, Jin Ling, Li Sheng, Feng Shu-Xiang, Liu Jian-Guo, Liu Wen-Qing. Study on remote sensing of carbon dioxide column concentration in the atmosphere by direct-sun infrared absorption spectroscopy. Acta Physica Sinica, 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [11] Liang Jie-Ning, Zhang Lei, Zhang Wu, Shi Jin-Sen. Energy balance analysis over Loess Plateau and the consequences for carbon dioxide flux. Acta Physica Sinica, 2013, 62(9): 099203. doi: 10.7498/aps.62.099203
    [12] Han Yue-Qi, Zhong Zhong, Wang Yun-Feng, Du Hua-Dong. Gradient calculation based ensemble variational method and its application to the inversion of the turbulent coefficient in atmospheric Ekman layer. Acta Physica Sinica, 2013, 62(4): 049201. doi: 10.7498/aps.62.049201
    [13] Li Hai-Yan, Hu Yun-An, Ren Jian-Cun, Zhu Min, Liu Liang. Neural network-based backstepping design for the synchronization of cross-strict feedback hyperchaotic systems with unmatched uncertainties. Acta Physica Sinica, 2012, 61(14): 140502. doi: 10.7498/aps.61.140502
    [14] He Ran, Huang Si-Xun, Zhou Chen-Teng, Jiang Zhu-Hui. Genetic algorithm with regularization method to retrieve ocean atmosphere duct. Acta Physica Sinica, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [15] Ding Shi-Jing, Ge De-Biao, Shen Ning. Numerical simulation of equivalent electromagnetic parameters of composite material. Acta Physica Sinica, 2010, 59(2): 943-948. doi: 10.7498/aps.59.943
    [16] Yang Kun-De, Ma Yuan-Liang. A geoacoustic inversion method based on bottom reflection signals. Acta Physica Sinica, 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [17] Sun Xian-Ming, Ha Heng-Xu. Retrieval of the optical thickness and effective radius of aerosols from reflected solar radiation measurements. Acta Physica Sinica, 2008, 57(9): 5565-5570. doi: 10.7498/aps.57.5565
    [18] Zhang Xin-Ming, Liu Jia-Qi, Liu Ke-An. Porosity inversion of 1-D two-phase medium with wavelet multiscale method. Acta Physica Sinica, 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [19] Wei Bing, Ge De-Biao. Reconstruction of transverse permittivity and conductivity for a lossy anisotropic plate. Acta Physica Sinica, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [20] Liang Zi-Zhang, Jin Ya-Qiu. . Acta Physica Sinica, 2002, 51(10): 2239-2244. doi: 10.7498/aps.51.2239
Metrics
  • Abstract views:  4823
  • PDF Downloads:  217
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2015
  • Accepted Date:  28 July 2015
  • Published Online:  05 December 2015

/

返回文章
返回