Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atomical simulations of structural changes of a melted TiAl alloy particle on TiAl (001) substrate

Qian Ze-Yu Zhang Lin

Citation:

Atomical simulations of structural changes of a melted TiAl alloy particle on TiAl (001) substrate

Qian Ze-Yu, Zhang Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Atomic packing structures of a melted TiAl alloy nanoparticle on TiAl(001) substrate at different temperatures are investigated by molecular dynamic simulation within the framework of embedded atom method. In order to obtain a melted TiAl alloy nanoparticle, a larger TiAl alloy bulk in nano-size is initially constructed, subsequently it is heated up to 1500 K and finally melted. A smaller sphere is extracted from the center of the melted bulk to serve as the melted nanoparticle. Periodic boundary conditions are employed in the x and y directions when constructing the sheet-like TiAl alloy substrate. In this simulation, the melted nanoparticle at 1500 K is laid on a TiAl(001) substrate, separately, at 1100, 1000, 900, …, 200 and 100 K as integral systems, and then they experience rapid solidification process. With the analysis of atomic arrangements of the nanoparticle and substrate surface layer by layer, it is found that temperature greatly affects the atomic packing structure of the nanoparticle. When the temperature of the substrate is 1100 K, most atoms in the nanoparticle disorderly pack, indicating that the nanoparticle is still melted at this temperature. At 1000 K, nearly all the atoms in the nanoparticle occupy TiAl lattice points, indicating that the nanoparticle is already solidified at this temperature. With the substrate temperature decreasing, most atoms in the nanoparticle are still of orderly pack. Meanwhile, a pyramid-like inner region, which takes TiAl(001) crystallographic plane as undersurface and TiAl [101], [101], [011], and [01 1] crystallographic axis as edges, abruptly emerges in the nanoparticle. Different atomic packing structures are observed inside and outside this region. Atomic layers composed of atoms inside this region are parallel to the (001) crystallographic plane of TiAl alloy substrate while atomic layers composed of atoms outside this region arranges along other different directions, which therefore leads to four interfaces separating the inner region from other parts of the nanoparticle. At low temperatures, this inner region still exists but its volume decreases with temperature decreasing. Besides, more and more atoms in the upper part of the nanoparticle gradually pack disorderly, which makes it more difficult to distinguish the inner region. In addition, the melted nanoparticle has very limited influences on the central and bottom parts of the substrate. However, thermal motion of atoms of substrate surface which touches the nanoparticle is intensified, thus leading to more obvious lattice distortion.
      Corresponding author: Zhang Lin, zhanglin@imp.neu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB606403), the National Natural Science Foundation of China (Grant No. 51171044), the Natural Science Foundation of Liaoning Province, China (Grant No. 2015020207), and the Fundamental Research Funds for the Central Universities, China (Grant No. N140504001).
    [1]

    Yang R 2015 Acta Metall. Sin. 51 129 (in Chinese) [杨锐 2015 金属学报 51 129]

    [2]

    Liu Y, Huang B Y, Zhou K C, He Y H, Tang Z H 2001 J. Aeronaut. Mater. 21 50 (in Chinese) [刘咏, 黄伯云, 周科朝, 贺跃辉, 唐志宏 2001 航空材料学报 21 50]

    [3]

    Zhang C P, Zhang K F 2009 Mater. Sci. Engng. A 520 101

    [4]

    Bacos M P, Morel A, Naveos S, Bachelier-locq A, Josso P, Thomas M 2006 Intermetallics 14 102

    [5]

    Kong F T, Chen Z Y, Tian J, Chen Y Y 2003 Rare Metal. Mat. Eng. 32 81 (in Chinese) [孔凡涛, 陈子勇, 田竞, 陈玉勇 2003 稀有金属材料与工程 32 81]

    [6]

    Liu Z G, Chai L H, Chen Y Y, Kong F T 2008 Acta Metall. Sin. 44 569 (in Chinese) [刘志光, 柴丽华, 陈玉勇, 孔凡涛 2008 金属学报 44 569]

    [7]

    Kenel C, Leinenbach C 2015 J. Alloy. Compd. 637 242

    [8]

    Zhang G Q, Li Z, Tian S F, Yan M G 2006 J. Aeronaut. Mater. 26 258 (in Chinese) [张国庆, 李周, 田世藩, 颜鸣皋 2006 航空材料学报 26 258]

    [9]

    Wang H W, Zhu D D, Zou C M, Wei Z J 2011 T. Nonferr. Metal. Soc. 21 328

    [10]

    Staron P, Bartels A, Brokmeier H G, Gerling R, Schimansky F P, Clemens H 2006 Mater. Sci. Engng. A 416 11

    [11]

    Wegmann G, Gerling R, Schimansky F P, Zhang J X 2002 Mater. Sci. Engng. A 329 99

    [12]

    Kiselev S P, Zhirov E V 2014 Intermetallics 49 106

    [13]

    Morris M A, Leboeuf M 1997 Mater. Sci. Engng. A 224 1

    [14]

    Imayev R M, Gabdullin N K, Salishchev G A, Senkov O N, Imayev Y M, Froes F H 1999 Acta Mater. 47 1809

    [15]

    Song C F, Fan Q N, Li W, Liu Y L, Zhang L 2011 Acta Phys. Sin. 60 063104 (in Chinese) [宋成粉, 樊沁娜, 李蔚, 刘永利, 张林 2011 物理学报 60 063104]

    [16]

    Liu Z G, Wang C Y, Yu T 2014 Chin. Phys. B 23 110208

    [17]

    Xie Z C, Gao T H, Guo X T, Qin X M, Xie Q 2014 Physica B 440 130

    [18]

    Xia J H, Liu C S, Cheng Z F, Shi D P 2011 Physica B 406 3938

    [19]

    Campo A D, Arzt E 2008 Chem. Rev. 108 911

    [20]

    Zhang C H, Lv N, Zhang X F, Saida A, Xia A G, Ye G X 2011 Chin. Phys. B 20 066103

    [21]

    Lv N, Pan Q F, Cheng Y, Yang B, Ye G X 2013 Chin. Phys. B 22 116103

    [22]

    Zhou X Y, Wu W K, He Y Z, Li Y F, Wang L, Li H 2015 Phys. Chem. Chem. Phys. 17 20658

    [23]

    Lin C P, Liu X J, Rao Z H 2015 Acta Phys. Sin. 64 083601 (in Chinese) [林长鹏, 刘新健, 饶中浩 2015 物理学报 64 083601]

    [24]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 Acta Phys. Sin. 64 216801 (in Chinese) [徐威, 兰忠, 彭本利, 温荣福, 马学虎 2015 物理学报 64 216801]

    [25]

    Farkas D 1994 Model. Simul. Mater. Sci. Engng. 2 975

  • [1]

    Yang R 2015 Acta Metall. Sin. 51 129 (in Chinese) [杨锐 2015 金属学报 51 129]

    [2]

    Liu Y, Huang B Y, Zhou K C, He Y H, Tang Z H 2001 J. Aeronaut. Mater. 21 50 (in Chinese) [刘咏, 黄伯云, 周科朝, 贺跃辉, 唐志宏 2001 航空材料学报 21 50]

    [3]

    Zhang C P, Zhang K F 2009 Mater. Sci. Engng. A 520 101

    [4]

    Bacos M P, Morel A, Naveos S, Bachelier-locq A, Josso P, Thomas M 2006 Intermetallics 14 102

    [5]

    Kong F T, Chen Z Y, Tian J, Chen Y Y 2003 Rare Metal. Mat. Eng. 32 81 (in Chinese) [孔凡涛, 陈子勇, 田竞, 陈玉勇 2003 稀有金属材料与工程 32 81]

    [6]

    Liu Z G, Chai L H, Chen Y Y, Kong F T 2008 Acta Metall. Sin. 44 569 (in Chinese) [刘志光, 柴丽华, 陈玉勇, 孔凡涛 2008 金属学报 44 569]

    [7]

    Kenel C, Leinenbach C 2015 J. Alloy. Compd. 637 242

    [8]

    Zhang G Q, Li Z, Tian S F, Yan M G 2006 J. Aeronaut. Mater. 26 258 (in Chinese) [张国庆, 李周, 田世藩, 颜鸣皋 2006 航空材料学报 26 258]

    [9]

    Wang H W, Zhu D D, Zou C M, Wei Z J 2011 T. Nonferr. Metal. Soc. 21 328

    [10]

    Staron P, Bartels A, Brokmeier H G, Gerling R, Schimansky F P, Clemens H 2006 Mater. Sci. Engng. A 416 11

    [11]

    Wegmann G, Gerling R, Schimansky F P, Zhang J X 2002 Mater. Sci. Engng. A 329 99

    [12]

    Kiselev S P, Zhirov E V 2014 Intermetallics 49 106

    [13]

    Morris M A, Leboeuf M 1997 Mater. Sci. Engng. A 224 1

    [14]

    Imayev R M, Gabdullin N K, Salishchev G A, Senkov O N, Imayev Y M, Froes F H 1999 Acta Mater. 47 1809

    [15]

    Song C F, Fan Q N, Li W, Liu Y L, Zhang L 2011 Acta Phys. Sin. 60 063104 (in Chinese) [宋成粉, 樊沁娜, 李蔚, 刘永利, 张林 2011 物理学报 60 063104]

    [16]

    Liu Z G, Wang C Y, Yu T 2014 Chin. Phys. B 23 110208

    [17]

    Xie Z C, Gao T H, Guo X T, Qin X M, Xie Q 2014 Physica B 440 130

    [18]

    Xia J H, Liu C S, Cheng Z F, Shi D P 2011 Physica B 406 3938

    [19]

    Campo A D, Arzt E 2008 Chem. Rev. 108 911

    [20]

    Zhang C H, Lv N, Zhang X F, Saida A, Xia A G, Ye G X 2011 Chin. Phys. B 20 066103

    [21]

    Lv N, Pan Q F, Cheng Y, Yang B, Ye G X 2013 Chin. Phys. B 22 116103

    [22]

    Zhou X Y, Wu W K, He Y Z, Li Y F, Wang L, Li H 2015 Phys. Chem. Chem. Phys. 17 20658

    [23]

    Lin C P, Liu X J, Rao Z H 2015 Acta Phys. Sin. 64 083601 (in Chinese) [林长鹏, 刘新健, 饶中浩 2015 物理学报 64 083601]

    [24]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 Acta Phys. Sin. 64 216801 (in Chinese) [徐威, 兰忠, 彭本利, 温荣福, 马学虎 2015 物理学报 64 216801]

    [25]

    Farkas D 1994 Model. Simul. Mater. Sci. Engng. 2 975

  • [1] Li Chang, Hou Zhao-Yang, Niu Yuan, Gao Quan-Hua, Wang Zhen, Wang Jin-Guo, Zou Peng-Fei. Simulation of nucleation and evolution process of nuclei during solidification of Ti3Al alloy. Acta Physica Sinica, 2022, 71(1): 016101. doi: 10.7498/aps.71.20211415
    [2] Wang Ya-Ming, Liu Yong-Li, Zhang Lin. Simulations of Ti nanoparticles upon heating and cooling on an atomic scale. Acta Physica Sinica, 2019, 68(16): 166402. doi: 10.7498/aps.68.20190228
    [3] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [4] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [5] Wang Zhi-Gang, Huang Rao, Wen Yu-Hua. Molecular dynamics investigation of thermal stability of Pt-Au core-shell nanoparticle. Acta Physica Sinica, 2013, 62(12): 126101. doi: 10.7498/aps.62.126101
    [6] Wang Zhi-Gang, Huang Rao, Wen Yu-Hua. Melting behavior of Au-Pd eutectic nanoparticle: A molecular dynamics study. Acta Physica Sinica, 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [7] Zhang Yang, Song Xiao-Yan, Xu Wen-Wu, Zhang Zhe-Xu. Thermodynamic study and cellular automaton simulation of thermal stability of nanocrystalline SmCo7 alloy. Acta Physica Sinica, 2012, 61(1): 016102. doi: 10.7498/aps.61.016102
    [8] Shao Chen-Wei, Wang Zhen-Hua, Li Yan-Nan, Zhao Qian, Zhang Lin. Computational study on thermal stability of an AuCu249 alloy cluster on the atomic scale. Acta Physica Sinica, 2011, 60(8): 083602. doi: 10.7498/aps.60.083602
    [9] Wang Zhi-Gang, Wu Liang, Zhang Yang, Wen Yu-Hua. Phase transition and coalescence behavior of fcc Fe nanoparticles: a molecular dynamics study. Acta Physica Sinica, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [10] Song Cheng-Fen, Fan Qin-Na, Li Wei, Liu Yong-Li, Zhang Lin. Atomic-scale study of structural change of TiAl alloy film during the cooling process. Acta Physica Sinica, 2011, 60(6): 063104. doi: 10.7498/aps.60.063104
    [11] Fan Qin-Na, Li Wei, Zhang Lin. Molecular dynamics study of relaxation and local structure changes in a rapidly quenched molten Cu57 cluster. Acta Physica Sinica, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [12] Zhao Qian, Zhang Lin, Qi Yang, Zhang Zong-Ning. Molecular dynamics study of structures of a Cu13 cluster supported on a Cu(001) surface at low temperatures. Acta Physica Sinica, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [13] Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics study on structural change of a Au959 cluster supported on MgO(100) surface at low temperature. Acta Physica Sinica, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [14] Xu Song-Ning, Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics simulations of a molten Cu55 cluster embedded in face-centred cubic bulk during. Acta Physica Sinica, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [15] Liu Mei-Lin, Zhang Zong-Ning, Li Wei, Zhao Qian, Qi Yang, Zhang Lin. Deposition process of MgO thin film on MgO(001) surface simulated by molecular dynamics. Acta Physica Sinica, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [16] Tian Hui-Chen, Liu Li, Wen Yu-Hua. Shape changes and melting characteristics of cubic Pt nanoparticle:A molecular dynamics study. Acta Physica Sinica, 2009, 58(6): 4080-4084. doi: 10.7498/aps.58.4080
    [17] Wang Kuang-Fei, Li Bang-Sheng, Ren Ming-Xing, Mi Guo-Fa, Guo Jing-Jie, Fu Heng-Zhi. Numerical simulation of columnar to equiaxial transition during solidification of Ti-44at%Al alloy. Acta Physica Sinica, 2007, 56(6): 3337-3343. doi: 10.7498/aps.56.3337
    [18] Liu Rang-Su, Qin Shu-Ping, Hou Zhao-Yang, Chen Xiao-Ying, Liu Feng-Xiang. Simulation study of microstructure transition of liquid metal in during solidification processes. Acta Physica Sinica, 2004, 53(9): 3119-3124. doi: 10.7498/aps.53.3119
    [19] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  4678
  • PDF Downloads:  178
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2015
  • Accepted Date:  27 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回