Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Manipulation of Hund's rule coupling and orbital-selective Mott transition

Sun Jian Liu Yang Song Yun

Citation:

Manipulation of Hund's rule coupling and orbital-selective Mott transition

Sun Jian, Liu Yang, Song Yun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using the dynamical mean field theory with Lanczos method as its impurity solver, we study the orbital-selective Mott transition (OSMT) in the two-orbital J model and Jz model. In the multi-orbital systems, the Mott metal-insulator transition occurs successively when the widths of the bands are different. As the narrow orbital becomes Mott insulator while the wide orbital is still in metallic phase, we find an orbital-selective Mott phase (OSMP). There are two different Hubbard models that are frequently used to describe the OSMT, which are named J model and Jz model, respectively. The J Model is composed of the whole Hund's rule coupling terms, including the spin-flip term, the pair-hopping term and the Ising type Hund's rule coupling term. However, there is only Ising type Hund's rule coupling term in the Jz model.#br#We study the ratio of bandwidth W2/W1 on the OSMT by analyzing the results of the density of states and quasi-particle weight. Comparing the phase diagrams obtained from the J and Jz models with the Hund's rule coupling J(Jz)=U/4, we find that the OSMP region of the J model is much larger than that of the Jz model when W2/W1=0.5 or W2/W1=0.2. When the ratio of bandwidth increases to W2/W1=0.8, the OSMP disappears completely in the Jz model. However in the J model, we can still find the OSMT but the area of the OSMP shrinks significantly. Therefore, the OSMT happens more easily in the J model than in the Jz model.#br#In order to discuss the cooperative effect of the bandwidth and Hund's rule coupling on the OSMT, we compare the phase diagrams for different Hund's rule couplings J(Jz)=U/4 and J(Jz)=U/2. We find that when the bandwidth W2/W1≥q 0.7, the OSMT disappears in Jz model in the case of either Jz=U/4 or Jz=U/2. However, the OSMP always exists in the J model if the bandwidths of the two orbitals are different, suggesting that the rotation invariances of the Hund's rule couplings can protect the OSMP. Therefore, one should be more careful when using the Jz model instead of the J model to study the OSMP.
      Corresponding author: Song Yun, yunsong@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174036, 11474023), the National Basic Research Program of China (Grant No. 2011CBA00108), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Salamon M B, Jaime M 2001 Rev. Mod. Phys. 73 583

    [2]

    Hirschfeld P J, Korshunov M M, Mazin I I 2011 Rep. Prog. Phys. 74 124508

    [3]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [4]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [5]

    Zou L J 2014 Physics 43 299 (in Chinese) [邹良剑 2014 物理 43 299]

    [6]

    Anisimov V I, Nekrasov I A, Kondakov D E, Rice T M, Sigrist M 2002 Eur. Phys. J. B 25 191

    [7]

    Mott N F 1968 Rev. Mod. Phys. 40 677

    [8]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [9]

    Inaba K, Koga A 2006 Phys. Rev. B 73 155106

    [10]

    Song Y, Zou L J 2005 Phys. Rev. B 72 085114

    [11]

    Bouadim K, Batrouni G G, Scalettar R T 2009 Phys. Rev. Lett. 102 226402

    [12]

    Zhang Y Z 2014 Physics 43 309 (in Chinese) [张宇钟 2014 物理 43 309]

    [13]

    Quan Y M, Liu D Y, Zou L J 2012 Acta Phys. Sin. 61 017106 (in Chinese) [全亚民, 刘大勇, 邹良剑 2012 物理学报 61 017106]

    [14]

    Koga A, Kawakami N, Rice T M, Sigrist M 2005 Phys. Rev. B 72 045128

    [15]

    Liebsch A 2005 Phys. Rev. Lett. 95 116402

    [16]

    Jakobi E, Blmer N, van Dongen P 2013 Phys. Rev. B 87 205135

    [17]

    Song Z Y, Lee H, Zhang Y Z 2015 New J. Phys. 17 033034

    [18]

    Blmer N, Knecht C, Pozgajcić K, van Dongen P 2007 J. Magn. Mater 310 922

    [19]

    Koga A, Kawakami N, Rice T M, Sigrist M 2005 Physica B 359 1366

    [20]

    Koga A, Kawakami N, Rice T M, Sigrist M 2004 Phys. Rev. Lett. 92 216402

    [21]

    Werner P, Millis A J 2007 Phys. Rev. Lett. 99 126405

    [22]

    Song Y, Zou L J 2009 Eur. Phys. J. B 72 59

    [23]

    Pruschke Th, Bulla R 2005 Eur. Phys. J. B 44 217

    [24]

    de'Medici L, Georges A, Biermann S 2005 Phys. Rev. B 72 205124

    [25]

    Ferrero M, Becca F, Fabrizio M, Capone M 2005 Phys. Rev. B 72 205126

    [26]

    de'Medici L 2011 Phys. Rev. B 83 205112

    [27]

    de'Medici L, Hassan S R, Capone M, Dai X 2011 Phys. Rev. Lett. 102 126401

    [28]

    Zhuang J N, Liu Q M, Fang Z, Dai X 2010 Chin. Phys. B 19 087104

    [29]

    Zhao J Zh, Zhuang J N, Deng X Y, Bi Y, Cai L C, Fang Z, Dai X 2012 Chin. Phys. B 21 057106

    [30]

    Caffarel M, Krauth W 1994 Phys. Rev. Lett. 72 1545

    [31]

    Georges A, Kotliar G, Krauth W, Rozenberg M J 1996 Rev. Mod. Phys. 68 13

    [32]

    Dagotto E 1994 Rev. Mod. Phys. 66 763

  • [1]

    Salamon M B, Jaime M 2001 Rev. Mod. Phys. 73 583

    [2]

    Hirschfeld P J, Korshunov M M, Mazin I I 2011 Rep. Prog. Phys. 74 124508

    [3]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [4]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [5]

    Zou L J 2014 Physics 43 299 (in Chinese) [邹良剑 2014 物理 43 299]

    [6]

    Anisimov V I, Nekrasov I A, Kondakov D E, Rice T M, Sigrist M 2002 Eur. Phys. J. B 25 191

    [7]

    Mott N F 1968 Rev. Mod. Phys. 40 677

    [8]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [9]

    Inaba K, Koga A 2006 Phys. Rev. B 73 155106

    [10]

    Song Y, Zou L J 2005 Phys. Rev. B 72 085114

    [11]

    Bouadim K, Batrouni G G, Scalettar R T 2009 Phys. Rev. Lett. 102 226402

    [12]

    Zhang Y Z 2014 Physics 43 309 (in Chinese) [张宇钟 2014 物理 43 309]

    [13]

    Quan Y M, Liu D Y, Zou L J 2012 Acta Phys. Sin. 61 017106 (in Chinese) [全亚民, 刘大勇, 邹良剑 2012 物理学报 61 017106]

    [14]

    Koga A, Kawakami N, Rice T M, Sigrist M 2005 Phys. Rev. B 72 045128

    [15]

    Liebsch A 2005 Phys. Rev. Lett. 95 116402

    [16]

    Jakobi E, Blmer N, van Dongen P 2013 Phys. Rev. B 87 205135

    [17]

    Song Z Y, Lee H, Zhang Y Z 2015 New J. Phys. 17 033034

    [18]

    Blmer N, Knecht C, Pozgajcić K, van Dongen P 2007 J. Magn. Mater 310 922

    [19]

    Koga A, Kawakami N, Rice T M, Sigrist M 2005 Physica B 359 1366

    [20]

    Koga A, Kawakami N, Rice T M, Sigrist M 2004 Phys. Rev. Lett. 92 216402

    [21]

    Werner P, Millis A J 2007 Phys. Rev. Lett. 99 126405

    [22]

    Song Y, Zou L J 2009 Eur. Phys. J. B 72 59

    [23]

    Pruschke Th, Bulla R 2005 Eur. Phys. J. B 44 217

    [24]

    de'Medici L, Georges A, Biermann S 2005 Phys. Rev. B 72 205124

    [25]

    Ferrero M, Becca F, Fabrizio M, Capone M 2005 Phys. Rev. B 72 205126

    [26]

    de'Medici L 2011 Phys. Rev. B 83 205112

    [27]

    de'Medici L, Hassan S R, Capone M, Dai X 2011 Phys. Rev. Lett. 102 126401

    [28]

    Zhuang J N, Liu Q M, Fang Z, Dai X 2010 Chin. Phys. B 19 087104

    [29]

    Zhao J Zh, Zhuang J N, Deng X Y, Bi Y, Cai L C, Fang Z, Dai X 2012 Chin. Phys. B 21 057106

    [30]

    Caffarel M, Krauth W 1994 Phys. Rev. Lett. 72 1545

    [31]

    Georges A, Kotliar G, Krauth W, Rozenberg M J 1996 Rev. Mod. Phys. 68 13

    [32]

    Dagotto E 1994 Rev. Mod. Phys. 66 763

  • [1] He Su-Juan, Zou Wei. Solvable collective dynamics of globally coupled Stuart-Landau limit-cycle systems under mean-field feedback. Acta Physica Sinica, 2023, 72(20): 200502. doi: 10.7498/aps.72.20230842
    [2] Wang Huan, He Xia-Yao, Li Shuai, Liu Bo. Quench dynamics of a spin-orbital coupled Bose-Einstein condensate with nonlinear interactions. Acta Physica Sinica, 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [3] Ma Yun-E, Qiao Xin, Gao Rui, Liang Jun-Cheng, Zhang Ai-Xia, Xue Ju-Kui. Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [4] Ni Yu, Sun Jian, Quan Ya-Min, Luo Dong-Qi, Song Yun. Dynamical mean-field theory of two-orbital Hubbard model. Acta Physica Sinica, 2022, 71(14): 147103. doi: 10.7498/aps.71.20220286
    [5] Bao An. Mott transition of fermions in anisotropic ruby lattice. Acta Physica Sinica, 2021, 70(23): 230305. doi: 10.7498/aps.70.20210963
    [6] Wen Lin, Liang Yi, Zhou Jing, Yu Peng, Xia Lei, Niu Lian-Bin, Zhang Xiao-Fei. Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [7] Liu Shuai, Huang Yi-Zhi, Guo Hai-Shan, Zhang Yong-Peng, Yang Lan-Jun. Plasma dynamic characteristics of a parallel-rail accelerator. Acta Physica Sinica, 2018, 67(6): 065201. doi: 10.7498/aps.67.20172403
    [8] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [9] He Li, Yu Zeng-Qiang. Landau critical velocity of spin-orbit-coupled Bose-Einstein condensate across quantum phase transition. Acta Physica Sinica, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [10] Xiao Yun-Peng, Li Song-Yang, Liu Yan-Bing. An information diffusion dynamic model based on social influence and mean-field theory. Acta Physica Sinica, 2017, 66(3): 030501. doi: 10.7498/aps.66.030501
    [11] Zhao Yang-Yang, Song Yun. Anderson localization effect on Mott phase in 1T-TaS2. Acta Physica Sinica, 2017, 66(5): 057101. doi: 10.7498/aps.66.057101
    [12] He Li, Yu Zeng-Qiang. Dynamic structure factors and sum rules in two-component quantum gases with spin-orbit coupling. Acta Physica Sinica, 2016, 65(13): 131101. doi: 10.7498/aps.65.131101
    [13] Yu Rong. Electron correlations and orbital selectivities in multiorbital models for iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [14] Ma Wen-Cong, Jin Ning-De, Gao Zhong-Ke. Detecting unstable periodic orbits from continuous chaotic dynamical systems by dynamical transformation method. Acta Physica Sinica, 2012, 61(17): 170510. doi: 10.7498/aps.61.170510
    [15] Quan Ya-Min, Liu Da-Yong, Zou Liang-Jian. Numerical algorithm for slave-boson mean field approach to the multi-band Hubbard model. Acta Physica Sinica, 2012, 61(1): 017106. doi: 10.7498/aps.61.017106
    [16] Gao Yuan, Liu Zhan-Li, Zhao Xue-Chuan, Zhang Zhao-Hui, Zhuang Zhuo, You Xiao-Chuan. Dislocation climb model based on coupling the diffusion theory ofpoint defects with discrete dislocation dynamics. Acta Physica Sinica, 2011, 60(9): 096103. doi: 10.7498/aps.60.096103
    [17] Gao Song, Xu Xue-You, Zhou Hui, Zhang Yan-Hui, Lin Sheng-Lu. The dynamics of Rydberg atom in an electric field near the saddle point. Acta Physica Sinica, 2009, 58(3): 1473-1479. doi: 10.7498/aps.58.1473
    [18] CHEN JU-HUA, WANG YONG-JIU. ORBITAL DYNAMICS OF EXTREME CHARGED BLACK HOLE. Acta Physica Sinica, 2001, 50(10): 1833-1836. doi: 10.7498/aps.50.1833
    [19] DU MAO-LU, LI ZHAO-MIN, KAN JIA-JUN. . Acta Physica Sinica, 1995, 44(10): 1607-1614. doi: 10.7498/aps.44.1607
    [20] FANG LI-ZHI, OU ZHI. THEORY OF THE DYNAMICAL JAHN-TELLER EFFECT IN STRONG COUPLING. Acta Physica Sinica, 1966, 22(4): 471-486. doi: 10.7498/aps.22.471
Metrics
  • Abstract views:  5367
  • PDF Downloads:  183
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2015
  • Accepted Date:  18 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回