Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Suppression of the blinking of single QDs by using an N-type semiconductor nanomaterial

Wang Zao Zhang Guo-Feng Li Bin Chen Rui-Yun Qin Cheng-Bing Xiao Lian-Tuan Jia Suo-Tang

Citation:

Suppression of the blinking of single QDs by using an N-type semiconductor nanomaterial

Wang Zao, Zhang Guo-Feng, Li Bin, Chen Rui-Yun, Qin Cheng-Bing, Xiao Lian-Tuan, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Single quantum dots (QDs) always exhibit strong blinking in fluorescence intensity when they are on some inert substrates. The blinking activity is attributed to the photoinduced charging of QDs by electron transfer (ET) to trap states in QDs and the surrounding matrix, which has been considered as an undesirable property in many applications. Here, we use N-doped indium tin oxide (ITO) semiconductor nanoparticles to suppress fluorescence blinking activity of single CdSe/ZnS core/shell QDs. The fluorescence characteristics of single QDs in ITO and on SiO2 cover glass are measured by a laser scanning confocal fluorescence microscopy, respectively. It is found that the on-and off-state probability densities of QDs on different substrates both can be fit by a truncated power law. Blinking rates for single QDs on glass and in ITO are also calculated. By contrast, single QDs doped in ITO show that their blinking rate and fluorescence lifetime both decrease. The on-state probability density of single QDs in ITO is approximately two orders of magnitude higher than that of QDs on SiO2 cover glass. It means that single QDs doped in ITO have a longer time to be on-state. Because the Fermi level in QDs is lower than in ITO, when they are in contact, electrons in ITO will transfer to QDs. As a result, the equilibration of their Fermi levels leads to the formation of negatively charged QDs. These electrons fill in the holes of QDs shell and enhance the on-state probability of QDs. Fluorescence decays of single QDs on glass and in ITO are measured by TAC/MCA, and they can be fit by biexponential function. The two lifetime values correspond to the single exciton lifetime and biexciton lifetime of QDs, respectively. It is worth noting that the distribution of the amplitude weighted average lifetime for single QDs in ITO is approximately 41% of that for single QDs on SiO2 cover glass and its full width at half maximum (FWHM) is changed to 50%. For the conduction band potential of QDs is higher than that of ITO, which contributes to photoinduced interfacial electron transfer from QDs to ITO and leads to the increase of nonradiative transition. These indicate that ITO can reduce single exciton and biexciton lifetime of QDs. The study demonstrates that ITO can effectively suppress the blinking activity of QDs.
      Corresponding author: Xiao Lian-Tuan, xlt@sxu.edu.cn
    • Funds: Project supported by the National Basic Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 11374196, 11174187, 10934004, 11204166, 11404200), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Doctoral Foundation of the Education Ministry of China (Grant No. 20121401120016), and the Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China.
    [1]

    Kloepfer J A, Bradforth S E, Nadeau J L 2005 J. Phys. Chem. B 109 9996

    [2]

    Sungwoo K, Hyuk Im S, Sang-Wook K 2013 Nanoscale 5 5205

    [3]

    Sambur J B, Novet T, Parkinson1 B A 2010 Science 330 63

    [4]

    Li W J, Zhong X H 2015 Acta Phys. Sin. 64 038806 (in Chinese) [李文杰, 钟新华 2015 物理学报 64 038806]

    [5]

    Bruchez Jr M, Moronne M, Gin P, Weiss S, Paul Alivisatos A 1998 Science 281 2013

    [6]

    Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid S L, Danuser G 2008 Nat. Methods 5 695

    [7]

    Dertinger T, Colyer R, Iyer G, Weiss R, Enderlein J 2009 Proc. Natl. Acad. Sci. 106 22287

    [8]

    Peterson J J, Nesbitt D J 2009 Nano Lett. 9 338

    [9]

    Galland C, Ghosh Y, Steinbrck A, Sykora M, Hollingsworth J A, Klimov V I, Htoon H 2011 Nature 479 203

    [10]

    Kiraz A, Atatre M, Imamoğlu A 2004 Phys. Rev. A 69 032305

    [11]

    Aldana J, Wang Y A, Peng X G 2001 J. Am. Chem. Soc. 123 8844

    [12]

    Guo W Z, Li J J, Wang Y A, Peng X G 2003 J. Am. Chem. Soc. 125 3901

    [13]

    Jin S Y, Song N H, Lian T Q 2010 ACS Nano 4 1545

    [14]

    Wu J F, Zhang G F, Chen R Y, Qin C B, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 167302 (in Chinese) [吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2014 物理学报 63 167302]

    [15]

    Nagao Y, Fujiwara H, Sasaki K 2014 J. Phys. Chem. C 118 20571

    [16]

    Zhou X D, Zhang S F, Zhou S H 2015 Acta Phys. Sin. 64 167301 (in Chinese) [周小东, 张少锋, 周思华 2015 物理学报 64 167301]

    [17]

    Hohng S, Ha T 2004 J. Am. Chem. Soc. 126 1324

    [18]

    Schafer S, Wang Z, Kipp T, Mews A 2011 Phys. Rev. Lett. 107 137403

    [19]

    Chiba T, Qi J, Fujiwara H, Sasaki K 2013 J. Phys. Chem. C 117 2507

    [20]

    LeBlanc S J, McClanahan M R, Moyer T, Jones M, Moyer P J 2014 Appl. Phys. 115 034306

    [21]

    Li Y, Liu R W, Ma L, Fan S N, Li H, Hu S X, Li M 2015 Chin. Phys. B 24 078202

    [22]

    Chang Y P, Tsai P Y, Lee H L, Lin K C 2013 Electroanalysis 25 1064

    [23]

    Wu X Y, Yeow E K L 2010 Chem. Commun. 46 4390

    [24]

    Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2000 J. Chem. Phys. 112 3117

    [25]

    Tang J, Marcus R A 2005 Phys. Rev. Lett. 95 107401

    [26]

    Cheng H W, Yuan C T, Wang J S, Lin T N, Shen J L, Hung Y L, Tang J, Tseng F G 2014 J. Phys. Chem. C 118 18126

    [27]

    Fisher B, Caruge J M, Zehnder D, Bawendi M G 2005 Phys. Rev. Lett. 94 087403

    [28]

    Mangum B D, Ghosh Y, Hollingsworth J A, Htoon H 2013 Opt. Express 21 7419

    [29]

    Inamdar S N, Ingole P P, Haram S K 2008 Chem. Phys. Chem. 9 2574

    [30]

    Debnath T, Maity P, Banerjee T, Das A, Ghosh H N 2015 J. Phys. Chem. C 119 3522

    [31]

    Zhang G F, Xiao L T, Chen R Y, Gao Y, Jia S T 2011 Phys. Chem. Chem. Phys. 13 13815

  • [1]

    Kloepfer J A, Bradforth S E, Nadeau J L 2005 J. Phys. Chem. B 109 9996

    [2]

    Sungwoo K, Hyuk Im S, Sang-Wook K 2013 Nanoscale 5 5205

    [3]

    Sambur J B, Novet T, Parkinson1 B A 2010 Science 330 63

    [4]

    Li W J, Zhong X H 2015 Acta Phys. Sin. 64 038806 (in Chinese) [李文杰, 钟新华 2015 物理学报 64 038806]

    [5]

    Bruchez Jr M, Moronne M, Gin P, Weiss S, Paul Alivisatos A 1998 Science 281 2013

    [6]

    Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid S L, Danuser G 2008 Nat. Methods 5 695

    [7]

    Dertinger T, Colyer R, Iyer G, Weiss R, Enderlein J 2009 Proc. Natl. Acad. Sci. 106 22287

    [8]

    Peterson J J, Nesbitt D J 2009 Nano Lett. 9 338

    [9]

    Galland C, Ghosh Y, Steinbrck A, Sykora M, Hollingsworth J A, Klimov V I, Htoon H 2011 Nature 479 203

    [10]

    Kiraz A, Atatre M, Imamoğlu A 2004 Phys. Rev. A 69 032305

    [11]

    Aldana J, Wang Y A, Peng X G 2001 J. Am. Chem. Soc. 123 8844

    [12]

    Guo W Z, Li J J, Wang Y A, Peng X G 2003 J. Am. Chem. Soc. 125 3901

    [13]

    Jin S Y, Song N H, Lian T Q 2010 ACS Nano 4 1545

    [14]

    Wu J F, Zhang G F, Chen R Y, Qin C B, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 167302 (in Chinese) [吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2014 物理学报 63 167302]

    [15]

    Nagao Y, Fujiwara H, Sasaki K 2014 J. Phys. Chem. C 118 20571

    [16]

    Zhou X D, Zhang S F, Zhou S H 2015 Acta Phys. Sin. 64 167301 (in Chinese) [周小东, 张少锋, 周思华 2015 物理学报 64 167301]

    [17]

    Hohng S, Ha T 2004 J. Am. Chem. Soc. 126 1324

    [18]

    Schafer S, Wang Z, Kipp T, Mews A 2011 Phys. Rev. Lett. 107 137403

    [19]

    Chiba T, Qi J, Fujiwara H, Sasaki K 2013 J. Phys. Chem. C 117 2507

    [20]

    LeBlanc S J, McClanahan M R, Moyer T, Jones M, Moyer P J 2014 Appl. Phys. 115 034306

    [21]

    Li Y, Liu R W, Ma L, Fan S N, Li H, Hu S X, Li M 2015 Chin. Phys. B 24 078202

    [22]

    Chang Y P, Tsai P Y, Lee H L, Lin K C 2013 Electroanalysis 25 1064

    [23]

    Wu X Y, Yeow E K L 2010 Chem. Commun. 46 4390

    [24]

    Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2000 J. Chem. Phys. 112 3117

    [25]

    Tang J, Marcus R A 2005 Phys. Rev. Lett. 95 107401

    [26]

    Cheng H W, Yuan C T, Wang J S, Lin T N, Shen J L, Hung Y L, Tang J, Tseng F G 2014 J. Phys. Chem. C 118 18126

    [27]

    Fisher B, Caruge J M, Zehnder D, Bawendi M G 2005 Phys. Rev. Lett. 94 087403

    [28]

    Mangum B D, Ghosh Y, Hollingsworth J A, Htoon H 2013 Opt. Express 21 7419

    [29]

    Inamdar S N, Ingole P P, Haram S K 2008 Chem. Phys. Chem. 9 2574

    [30]

    Debnath T, Maity P, Banerjee T, Das A, Ghosh H N 2015 J. Phys. Chem. C 119 3522

    [31]

    Zhang G F, Xiao L T, Chen R Y, Gao Y, Jia S T 2011 Phys. Chem. Chem. Phys. 13 13815

  • [1] Liu Tian, Li Zong-Liang, Zhang Yan-Hui, Lan Kang. Study of quantum speed limit of of transport process of single quantum dot system in dissipative environment. Acta Physica Sinica, 2023, 72(4): 047301. doi: 10.7498/aps.72.20222159
    [2] Li Bin, Miao Xiang-Yang. Photoluminescence blinking properties of single CsPbBr3 perovskite quantum dots. Acta Physica Sinica, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [3] Zhang Qiang-Qiang,  Hu Jian-Yong,  Jing Ming-Yong,  Li Bin,  Qin Cheng-Bing,  Li Yao,  Xiao Lian-Tuan,  Jia Suo-Tang. Research on fluorescence lifetime dynamics of quantum dot by single photons modulation spectrum. Acta Physica Sinica, 2019, 68(1): 017803. doi: 10.7498/aps.68.20181797
    [4] Qiao Zhi-Xing, Qin Cheng-Bing, He Wen-Jun, Gong Ya-Ni, Xiao Lian-Tuan, Zhang Guo-Feng, Chen Rui-Yun, Gao Yan, Jia Suo-Tang. Lifetime modulation of graphene oxide film by laser direct writing for the fabrication of micropatterns. Acta Physica Sinica, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [5] Su Dan, Dou Xiu-Ming, Ding Kun, Wang Hai-Yan, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Extraction efficiency enhancement of single InAs quantum dot emission through light scattering on the Au nanoparticles. Acta Physica Sinica, 2015, 64(23): 235201. doi: 10.7498/aps.64.235201
    [6] Wang Hai-Yan, Dou Xiu-Ming, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Photoluminescence from plasmon-enhanced single InAs quantum dots. Acta Physica Sinica, 2014, 63(2): 027801. doi: 10.7498/aps.63.027801
    [7] Wu Jian-Fang, Zhang Guo-Feng, Chen Rui-Yun, Qin Cheng-Bin, Xiao Lian-Tuan, Jia Suo-Tang. Influence of interfacial electron transfer on fluorescence blinking of quantum dots. Acta Physica Sinica, 2014, 63(16): 167302. doi: 10.7498/aps.63.167302
    [8] Shen Ying-Long, Tang Chun-Mei, Sheng Qiu-Chun, Liu Shuang, Li Wen-Tao, Wang Long-Fei, Chen Dan-Ping. Spectroscopic properties and energy transfer of Ce3+/Eu2+ codoped oxide glasses with high Gd2O3 concentration. Acta Physica Sinica, 2013, 62(11): 117803. doi: 10.7498/aps.62.117803
    [9] Bi Chang-Hong, Meng Qing-Yu. Luminescent properties and energy transfer mechanism of CaWO4:Sm3+ phosphors. Acta Physica Sinica, 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [10] Wan Wen-Bo, Hua Deng-Xin, Le Jing, Liu Mei-Xia, Cao Ning. Laser-induced chlorophyll fluorescence lifetime measurement and characteristic analysis. Acta Physica Sinica, 2013, 62(19): 190601. doi: 10.7498/aps.62.190601
    [11] Yang Zhen-Ling, Liu Yu-Qiang, Yang Yan-Qiang. ExtendedQ-band fluorescence lifetime of Tetraphenyl porphyrins adsorbed on silver nanoparticles. Acta Physica Sinica, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
    [12] Sheng Yu-Bang, Yang Lü-Yun, Luan Huai-Xun, Liu Zi-Jun, Li Jin-Yan, Dai Neng-Li. Gamma radiation effects on absorption and emission properties of erbium-doped silicate glasses. Acta Physica Sinica, 2012, 61(11): 116301. doi: 10.7498/aps.61.116301
    [13] Gao Dang-Li, Zhang Xiang-Yu, Zhang Zheng-Long, Xu Liang-Min, Lei Yu, Zheng Hai-Rong. Improvement on the up-conversion fluorescence emission in Tm3+ doped optical materials by adjusting phonon distribution. Acta Physica Sinica, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [14] Xu Deng, Ye Li-Hua, Cui Yi-Ping, Xi Jun, Li Li, Wang Qiong. Study of photoluminescence and energy transfer properties of an organic dye salt doped thin films. Acta Physica Sinica, 2008, 57(5): 3267-3270. doi: 10.7498/aps.57.3267
    [15] Ding Jun, Yang Qiu-Hong, Tang Zai-Feng, Xu Jun, Su Liang-Bi. Spectroscopic properties of Er3+/Yb3+ co-doped transparent yttrium lanthanum oxide ceramic. Acta Physica Sinica, 2007, 56(4): 2207-2211. doi: 10.7498/aps.56.2207
    [16] Wang Xue-Jun, Xia Hai-Ping. Properties of Bi doped Al2O3-GeO2-M (M=Na2O, BaO, Y2O3) glasses. Acta Physica Sinica, 2006, 55(10): 5263-5267. doi: 10.7498/aps.55.5263
    [17] Liu Li-Xin, Qu Jun-Le, Lin Zi-Yang, Chen Dan-Ni, Xu Gai-Xia, Hu Tao, Guo Bao-Ping, Niu Han-Ben. Time-resolved two-photon excitation fluorescence spectroscopy. Acta Physica Sinica, 2006, 55(12): 6281-6286. doi: 10.7498/aps.55.6281
    [18] Miao Zhuang, Li Shan-Feng, Zhang Qing-Yu. Effect of Y co-doping on the photoluminescence and lifetime of Er3+ in silicate glasses. Acta Physica Sinica, 2006, 55(8): 4321-4326. doi: 10.7498/aps.55.4321
    [19] Lin Zi-Yang, Fu Zhe, Liu Li-Xin, Hu Tao, Qu Jun-Le, Guo Bao-Ping, Niu Han-Ben. Information processing of multidimensional simultaneity fluorescence with two-photon array excitation. Acta Physica Sinica, 2006, 55(12): 6701-6707. doi: 10.7498/aps.55.6701
    [20] Wang Qian-Qian, Wei Guang-Hui. . Acta Physica Sinica, 2002, 51(5): 1031-1034. doi: 10.7498/aps.51.1031
Metrics
  • Abstract views:  5766
  • PDF Downloads:  153
  • Cited By: 0
Publishing process
  • Received Date:  25 July 2015
  • Accepted Date:  08 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回