Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of multi-hop noisy quantum entanglement channel and optimal relay protocol

Yang Guang Lian Bao-Wang Nie Min

Citation:

Characteristics of multi-hop noisy quantum entanglement channel and optimal relay protocol

Yang Guang, Lian Bao-Wang, Nie Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The optimal relay path calculation and selection are important factors to affect the performance of quantum communication network. Current researches seldom consider the quantum path selection in real noisy environments. One of the difficult problems is how to analyze the influence of the noise on the quantum communication in multi-hop channels. This paper aims to solve the path selection problem of the quantum teleportation network in noisy environments. The process of entanglement swapping in the phase damping channel is first studied with an example of two-hop quantum channel, whose damping factors are p1 and p2. The entanglement states |φ> 12+ and |φ> 34+ are distributed separately in each hop. After the entanglement swapping, the density matrix of the entanglement state of photon 1 and photon 4 is obtained by performing a partial trace over the environment. Then, the Bures fidelity of this entanglement is calculated. After that, we define the path equivalent damping factor to describe the characteristic of the two-hop noisy quantum relay path. With an equivalent calculation method, the results above can be generalized to multi-hop channel. The path equivalent damping factor of the multi-hop amplitude damping channel is also obtained. According to these results, we propose an optimal relay protocol for the quantum teleportation network with the criterion of path equivalent damping factor, which means that a relay path with the minimum path equivalent damping factor can obtain the highest teleportation fidelity. The types and parameters of the messages used in the protocol are given. The processes of the relay protocol are described specifically, including neighbor finding, quantum link noise measurement, and quantum link status transmission. An improved Dijkstra algorithm is used in the optimal path calculation. Furthermore, because the entanglement resources maintained in the quantum nodes are limited and may be exhausted in superior quantum links, we propose a resource reservation method to avoid the failure of the relay path setup. Theoretical analysis and simulation show that our method can obtain a lower average equivalent damping factor and higher teleportation fidelity. It can also be seen that increasing the number of the entanglement resources will raise the performance of the quantum network, however, it brings higher cost and complexity. Therefore, the entanglement resources maintained in the quantum nodes must be configured reasonably according to the network scale, the cost, the time delay and the need of the users.
      Corresponding author: Yang Guang, sharon.yg@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172071, 61201194) and the International Scientific and Technological Cooperation and Exchange Program of Shaanxi Province, China (Grant Nos. 2015KW-013, 2014KW02-02).
    [1]

    Sergienko A V 2006 Quantum Communications and Cryptography (Florida: Taylor & Francis Group CRC Press) pp83-102

    [2]

    Poppe A, Peev M, Maurhart O 2008 Int. J. Quantum Inf. 6 209

    [3]

    Xu F X, Chen W, Wang S, Yin Z Q, Zhang Y, Liu Y, Zhou Z, Zhao Y B, Li H W, Liu D, Han Z F, Guo G C 2009 Chin. Sci. Bull. 54 2991

    [4]

    Xu H X 2014 J. CAEIT 9 259 (in Chinese) [许华醒 2014 中国电子科学研究院学报 9 259]

    [5]

    Hughes R J, Buttler W T, Kwiat P G, Lamoreuax S K, Morgan G L, Nordholt J E, Peterson C G 2000 Aerospace Conference Proceedings, 2000 IEEE Big Sky MT, USA, March 18-25, 2000 p191

    [6]

    Ursin R, Jennewein T, Kofler J, Perdigues J M, Cacciapuoti L, Zeilinger A 2009 Europhys. News 40 26

    [7]

    Toyoshima M, Takayama Y, Takahashi T, Suzuki K, Kimura S 2008 IEEE Aerosp. Electron. Syst. Mag. 23 10

    [8]

    Yin J, Cao Y, Liu S B, Pan G S, Wang J H, Yang T, Pan J W 2013 Opt. Express 21 20032

    [9]

    Heilmann R, Gräfe M, Nolte S, Szameit A 2015 Sci. Bull. 60 96

    [10]

    Su X L, Jia X J, Xie C D, Peng K C 2014 Sci. China: Phys. Mech. Astron. 57 1210

    [11]

    Wang W Y, Wang C, Zhang G Y 2009 Chin. Sci. Bull. 54 158

    [12]

    Wang C Z, Guo H, Ren J G, CaoY, Peng C Z, Liu W Y 2014 Sci. China: Phys. Mech. Astron. 57 1233

    [13]

    Long G L, Li Y S, Zhang W L, Niu L 1999 Phys. Lett. A 262 27

    [14]

    Botsinis P, Ng S X, Hanzo L 2013 Access. IEEE 1 94

    [15]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673 (in Chinese) [王剑, 陈皇卿, 张权, 唐朝京 2007 物理学报 56 673]

    [16]

    Wang T Y, Qin S J, Wen Q Y, Zhu F C 2008 Acta Phys. Sin. 57 7452 (in Chinese) [王天银, 秦素娟, 温巧燕, 朱甫臣 2008 物理学报 57 7452]

    [17]

    Zou X F, Qiu D W 2014 Sci. China: Phys. Mech. Astron. 57 1696

    [18]

    Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 物理学报 64 160306]

    [19]

    Nie M, Lu G Y 2008 J. Northwest Univ. (Nat. Sci. Ed.) 38 905 (in Chinese) [聂敏, 卢光跃 2008 西北大学学报自然科学版 38 905]

    [20]

    Liu X H, Pei C X, Nie M 2014 J. Jilin Univ. (Technol. Ed.) 44 1177 (in Chinese) [刘晓慧, 裴昌幸, 聂敏 2014 吉林大学学报工学版 44 1177]

    [21]

    Cheng S T, Wang C Y, Tao M H 2005 IEEE J. Sel. Areas Commun. 23 1424

    [22]

    Yu X T, Zhang Z C, Xu J 2014 Chin. Phys. B 23 010303

    [23]

    Ma H Y, Guo Z W, Fan X K, Wang S M 2015 Acta Electron. Sin. 43 171 (in Chinese) [马鸿洋, 郭忠文, 范兴奎, 王淑梅 2015 电子学报 43 171]

    [24]

    Yin H, Han Y 2012 Quantum Communication Theory and Technology (Beijing: Publishing House of Electronics Industry) pp202-211 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术(北京:电子工业出版社)第202–211页]

    [25]

    Zhang Y D 2012 Principles of Quantum Information Physics (Beijing: Science Press) pp147-253 (in Chinese) [张永德 2012 量子信息物理原理(北京: 科学出版社) 第147–172页]

    [26]

    Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A, Wootters W K 1996 Phys. Rev. Lett. 76 722

    [27]

    Nicolas S, Christoph S, Hugues D R, Nicolas G 2011 Rev. Mod. Phys. 83 33

    [28]

    Fujiwara A 2004 Phys. Rev. A 70 012317

    [29]

    Sarovar M, Milburn G J 2006 J. Phys. A: Math. Gen. 39 8487

  • [1]

    Sergienko A V 2006 Quantum Communications and Cryptography (Florida: Taylor & Francis Group CRC Press) pp83-102

    [2]

    Poppe A, Peev M, Maurhart O 2008 Int. J. Quantum Inf. 6 209

    [3]

    Xu F X, Chen W, Wang S, Yin Z Q, Zhang Y, Liu Y, Zhou Z, Zhao Y B, Li H W, Liu D, Han Z F, Guo G C 2009 Chin. Sci. Bull. 54 2991

    [4]

    Xu H X 2014 J. CAEIT 9 259 (in Chinese) [许华醒 2014 中国电子科学研究院学报 9 259]

    [5]

    Hughes R J, Buttler W T, Kwiat P G, Lamoreuax S K, Morgan G L, Nordholt J E, Peterson C G 2000 Aerospace Conference Proceedings, 2000 IEEE Big Sky MT, USA, March 18-25, 2000 p191

    [6]

    Ursin R, Jennewein T, Kofler J, Perdigues J M, Cacciapuoti L, Zeilinger A 2009 Europhys. News 40 26

    [7]

    Toyoshima M, Takayama Y, Takahashi T, Suzuki K, Kimura S 2008 IEEE Aerosp. Electron. Syst. Mag. 23 10

    [8]

    Yin J, Cao Y, Liu S B, Pan G S, Wang J H, Yang T, Pan J W 2013 Opt. Express 21 20032

    [9]

    Heilmann R, Gräfe M, Nolte S, Szameit A 2015 Sci. Bull. 60 96

    [10]

    Su X L, Jia X J, Xie C D, Peng K C 2014 Sci. China: Phys. Mech. Astron. 57 1210

    [11]

    Wang W Y, Wang C, Zhang G Y 2009 Chin. Sci. Bull. 54 158

    [12]

    Wang C Z, Guo H, Ren J G, CaoY, Peng C Z, Liu W Y 2014 Sci. China: Phys. Mech. Astron. 57 1233

    [13]

    Long G L, Li Y S, Zhang W L, Niu L 1999 Phys. Lett. A 262 27

    [14]

    Botsinis P, Ng S X, Hanzo L 2013 Access. IEEE 1 94

    [15]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673 (in Chinese) [王剑, 陈皇卿, 张权, 唐朝京 2007 物理学报 56 673]

    [16]

    Wang T Y, Qin S J, Wen Q Y, Zhu F C 2008 Acta Phys. Sin. 57 7452 (in Chinese) [王天银, 秦素娟, 温巧燕, 朱甫臣 2008 物理学报 57 7452]

    [17]

    Zou X F, Qiu D W 2014 Sci. China: Phys. Mech. Astron. 57 1696

    [18]

    Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 物理学报 64 160306]

    [19]

    Nie M, Lu G Y 2008 J. Northwest Univ. (Nat. Sci. Ed.) 38 905 (in Chinese) [聂敏, 卢光跃 2008 西北大学学报自然科学版 38 905]

    [20]

    Liu X H, Pei C X, Nie M 2014 J. Jilin Univ. (Technol. Ed.) 44 1177 (in Chinese) [刘晓慧, 裴昌幸, 聂敏 2014 吉林大学学报工学版 44 1177]

    [21]

    Cheng S T, Wang C Y, Tao M H 2005 IEEE J. Sel. Areas Commun. 23 1424

    [22]

    Yu X T, Zhang Z C, Xu J 2014 Chin. Phys. B 23 010303

    [23]

    Ma H Y, Guo Z W, Fan X K, Wang S M 2015 Acta Electron. Sin. 43 171 (in Chinese) [马鸿洋, 郭忠文, 范兴奎, 王淑梅 2015 电子学报 43 171]

    [24]

    Yin H, Han Y 2012 Quantum Communication Theory and Technology (Beijing: Publishing House of Electronics Industry) pp202-211 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术(北京:电子工业出版社)第202–211页]

    [25]

    Zhang Y D 2012 Principles of Quantum Information Physics (Beijing: Science Press) pp147-253 (in Chinese) [张永德 2012 量子信息物理原理(北京: 科学出版社) 第147–172页]

    [26]

    Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A, Wootters W K 1996 Phys. Rev. Lett. 76 722

    [27]

    Nicolas S, Christoph S, Hugues D R, Nicolas G 2011 Rev. Mod. Phys. 83 33

    [28]

    Fujiwara A 2004 Phys. Rev. A 70 012317

    [29]

    Sarovar M, Milburn G J 2006 J. Phys. A: Math. Gen. 39 8487

  • [1] Huang Tian-Long, Wu Yong-Zheng, Ni Ming, Wang Shi, Ye Yong-Jin. Effects of quantum noise on Shor’s algorithm. Acta Physica Sinica, 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [2] Yang Guang, Liu Qi, Nie Min, Liu Yuan-Hua, Zhang Mei-Ling. Multi-hop entanglement swapping in quantum networks based on polization-space hyperentanglement. Acta Physica Sinica, 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [3] Fan Hong-Yi, Wu Ze. Classical correspondence of quantum entanglement in mesoscopic circuit. Acta Physica Sinica, 2022, 71(1): 010302. doi: 10.7498/aps.71.20210992
    [4] Classical correspondence of quantum entanglement in mesoscopic circuit. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210992
    [5] He Zhen-Xing, Fan Xing-Kui, Chu Peng-Cheng, Ma Hong-Yang. Anonymous communication scheme based on quantum walk on Cayley graph. Acta Physica Sinica, 2020, 69(16): 160301. doi: 10.7498/aps.69.20200333
    [6] Yang Tian-Shu, Zhou Zong-Quan, Li Chuan-Feng, Guo Guang-Can. Multimode solid-state quantum memory. Acta Physica Sinica, 2019, 68(3): 030303. doi: 10.7498/aps.68.20182207
    [7] Guan Jia, Gu Yi-Sheng, Zhu Cheng-Jie, Yang Ya-Ping. Low-noise optical field phase-shifting manipulated using a coherently-prepared three-level atomic medium. Acta Physica Sinica, 2017, 66(2): 024205. doi: 10.7498/aps.66.024205
    [8] Nie Min, Liu Guang-Teng, Yang Guang, Pei Chang-Xing. Voice over quantum IP routing based on least relay node constrained optimization strategy. Acta Physica Sinica, 2016, 65(12): 120302. doi: 10.7498/aps.65.120302
    [9] Ma Hong-Yang, Qin Guo-Qing, Fan Xing-Kui, Chu Peng-Cheng. Quantum network direct communication protocol over noisy channel. Acta Physica Sinica, 2015, 64(16): 160306. doi: 10.7498/aps.64.160306
    [10] Huang Jian-Heng, Du Yang, Lei Yao-Hu, Liu Xin, Guo Jin-Chuan, Niu Han-Ben. Noise analysis of hard X-ray differential phasecontrast imaging. Acta Physica Sinica, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [11] Zhu Wei, Nie Min. The model design and performance analysis of quantum signaling switch. Acta Physica Sinica, 2013, 62(13): 130304. doi: 10.7498/aps.62.130304
    [12] Yu Xu-Tao, Xu Jin, Zhang Zai-Chen. Routing protocol for wireless ad hoc quantum communication network based on quantum teleportation. Acta Physica Sinica, 2012, 61(22): 220303. doi: 10.7498/aps.61.220303
    [13] Li Wei, Fan Ming-Yu, Wang Guang-Wei. Arbitrated quantum signature scheme based on entanglement swapping. Acta Physica Sinica, 2011, 60(8): 080302. doi: 10.7498/aps.60.080302
    [14] Fu Bang, Deng Wen-Ji. General solutions to spin transportation of electrons through equilateral polygon quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [15] Li Peng, Deng Wen-Ji. Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [16] Zhao Han, Zhou Xiao-Qing, Yang Xiao-Lin. Establishment of multi-user quantum channel of entangled multi-atom based on cavity QED. Acta Physica Sinica, 2009, 58(9): 5970-5977. doi: 10.7498/aps.58.5970
    [17] Lu Cui-Ping, Yuan Chun-Hua, Zhang Wei-Ping. The property of quantum noise in active Raman gain medium. Acta Physica Sinica, 2008, 57(11): 6976-6981. doi: 10.7498/aps.57.6976
    [18] Wang Ju-Xia, Yang Zhi-Yong, An Yu-Ying. The entanglement states transfer and preservation in the process of two-level atoms interacting with multi-mode light fields. Acta Physica Sinica, 2007, 56(11): 6420-6426. doi: 10.7498/aps.56.6420
    [19] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. A theoretical scheme for multi-user quantum authentication and key distribution in a network. Acta Physica Sinica, 2005, 54(9): 3995-3999. doi: 10.7498/aps.54.3995
    [20] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. Multi-party multi-level quantum key distribution protocol based on entanglement swapping. Acta Physica Sinica, 2005, 54(12): 5544-5548. doi: 10.7498/aps.54.5544
Metrics
  • Abstract views:  4708
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  24 July 2015
  • Accepted Date:  06 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回