Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on + shaped high conductivity constructal channels based on entransy theory

Feng Hui-Jun Chen Lin-Gen Xie Zhi-Hui Sun Feng-Rui

Citation:

Experimental study on + shaped high conductivity constructal channels based on entransy theory

Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on constructal theory and entransy theory, an experimental study on + shaped high conductivity channels in a square body is carried out. Heat conduction performance comparisons of the bodies based on different optimization objectives and different layouts of the high conductivity channels are performed. In the experiment, the materials of the square body and high conductivity channel are epoxy resin and brass, respectively; the brass channel is embedded in the square body. Two square heating boards, closed at the upper and lower sides of the square body, are used to uniformly heat itself. The internal heat generation of the square body is approximately simulated by this method. The square body is placed in a thermal insulation box to reduce the heat dissipation caused by heat convection. The heat generated by the heating boards is absorbed by the outside refrigerator device. A measurement window is set at the front side of the thermal insulation box. The temperature field of the square body is measured by the infrared thermal imager. The peak temperature, average temperature difference, and entransy dissipation rate of the body can be calculated by the measured results, respectively. Experimental results are compared to those obtained by numerical calculations; the results show that for the + shaped high conductivity channels in a square body, the maximum temperatures are located between the two branches of the + shaped high conductivity channels for both experimental result and numerical calculation. The errors in the average temperature and entransy dissipation rate of the body based on the experimental result and numerical calculations are within the acceptable range. The two results verify their validity of the heat conduction constructal optimization. Compared the square body with H shaped high conductivity channel, the entransy dissipation rate of the body caused by heat conduction is reduced by adopting the first order + shaped high conductivity channel. Compared with the optimal constructs of the first order + shaped high conductivity channels based on the minimizations of entransy dissipation rate and maximum temperature difference, the entransy dissipation rate caused by heat conduction of the former construct is reduced by 5.98%, but the maximum temperature difference is increased by 3.57%. The aim of maximum temperature difference minimization helps to improve the thermal safety of a body, while that of the entransy dissipation rate helps to improve the global heat conduction performance of a body. When the thermal safety is permitted, the optimal construct based on entransy dissipation rate minimization can be adopted in the design of practical electronic device to improve its global heat conduction performance.
      Corresponding author: Chen Lin-Gen, lingenchen@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51356001, 51176203, 51506220).
    [1]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1-314

    [2]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1-516

    [3]

    Chen L G 2012 Sci. China: Tech. Sci. 55 802

    [4]

    Bejan A, Lorente S 2013 J. Appl. Phys. 113 151301

    [5]

    Xie G N, Song Y D, Asadi M, Lorenzini G 2015 Trans. ASME, J. Heat Transfer 137 061901

    [6]

    Bejan A 2015 Trans. ASME, J. Heat Transfer 137 061003

    [7]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [8]

    Ghodoossi L, Egrican N 2003 J. Appl. Phys. 93 4922

    [9]

    Wu W J, Chen L G, Sun F R 2007 Appl. Energy 84 39

    [10]

    Wei S H, Chen L G, Sun F R 2009 Appl. Energy 86 1111

    [11]

    Lorenzini G, Biserni C, Rocha L A O 2013 Int. J. Heat Mass Transfer 58 513

    [12]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Int. J. Heat Mass Transfer 91 162

    [13]

    Ghodoossi S, Egrican N 2004 Energy Convers. Mgmt. 45 811

    [14]

    Chen L G, Wu W J, Sun F R 2014 Int. J. Low-Carbon Tech. 9 256

    [15]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 J. Energy Inst. doi: 10.1016/j. joei. 2015.01.016

    [16]

    Rocha L A O, Lorente S, Bejan A 2002 Int. J. Heat Mass Transfer 45 1643

    [17]

    Xiao Q H, Chen L G, Sun F R 2011 Int. J. Therm. Sci. 50 1031

    [18]

    Salimpour M R, Sharifi F, Menbari D 2013 Proc. Inst. Mech. Engng., Part E: J. Process Mech. Engng. 227 231

    [19]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Int. J. Heat Mass Transfer 67 704

    [20]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [21]

    Li Z X, Guo Z Y 2010 Field synergy principle of heat convection optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论(北京: 科学出版社) 第 78-97 页]

    [22]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [23]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [24]

    Cheng X T, Liang X G 2013 J. Therm. Sci. Tech. 8 337

    [25]

    Cheng X T, Liang X G 2014 Chin. Sci. Bull., 59 5309

    [26]

    Chen L G 2014 Sci. China: Tech. Sci. 57 2305

    [27]

    Ji J, Liu T, Zhang X, Guo Z Y 2014 Sci. Found. China 6 446 (in Chinese) [纪军, 刘涛, 张兴, 过增元 2014 中国科学基金 6 446]

    [28]

    Zhu H Y 2007 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [朱宏晔 2007 博士学位论文 (北京: 清华大学) ]

    [29]

    Wang S P, Chen Q L, Zhang B J 2009 Chin. Sci. Bull. 54 3572

    [30]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Acta Phys. Sin. 64 054402 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2015 物理学报 64 054402]

    [31]

    Tao Y B, He Y L, Liu Y K, Tao W Q 2014 Int. J. Heat Mass Transfer 77 695

    [32]

    Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124

    [33]

    Wang Y F, Chen Q 2015 Energy 85 609

    [34]

    Qian X D, Li Z, Li Z X 2015 Int. J. Heat Mass Transfer 81 252

    [35]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Acta Phys. Sin. 64 034701 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2015 物理学报 64 034701]

    [36]

    Hu G J, Cao B Y, Guo Z Y 2011 Chin. Sci. Bull. 56 2974

    [37]

    Cheng X T, Liang X G 2015 Int. J. Heat Mass Transfer 81 167

    [38]

    Wang W H, Cheng X T, Liang X G 2015 Int. J. Heat Mass Transfer 83 536

    [39]

    Cheng X T, Liang X G 2015 Chin. Phys. B 24 060510

    [40]

    Wu Y Q 2015 Chin. Phys. B 24 070506

    [41]

    Wei S H, Chen L G, Sun F R 2008 Sci. China Ser. E: Tech. Sci. 51 1283

    [42]

    Wei S H, Chen L G, Sun F R 2010 Thermal Sci. 14 1075

    [43]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 2400

    [44]

    Chen L G, Wei S H, Sun F R 2011 Int. J. Heat Mass Transfer 54 210

    [45]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 102

    [46]

    Feng H J, Chen L G, Sun F R 2012 Sci. China: Tech. Sci. 55 779

    [47]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 J. Energy Inst. 88 188

    [48]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Int. J. Heat Mass Transfer 84 848

    [49]

    Feng H J 2014 Ph. D. Dissertation (Wuhan: Naval University of Engineering) (in Chinese) [冯辉君 2014 博士学位论文 (武汉: 海军工程大学)]

    [50]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 物理学报 62 134401]

    [51]

    da Silva A K, Bejan A 2006 Int. J. Therm. Sci. 45 860

    [52]

    Fan Z, Zhou X, Luo L, Yuan W 2008 Exp. Therm. Fluid Sci. 33 77

  • [1]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1-314

    [2]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1-516

    [3]

    Chen L G 2012 Sci. China: Tech. Sci. 55 802

    [4]

    Bejan A, Lorente S 2013 J. Appl. Phys. 113 151301

    [5]

    Xie G N, Song Y D, Asadi M, Lorenzini G 2015 Trans. ASME, J. Heat Transfer 137 061901

    [6]

    Bejan A 2015 Trans. ASME, J. Heat Transfer 137 061003

    [7]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [8]

    Ghodoossi L, Egrican N 2003 J. Appl. Phys. 93 4922

    [9]

    Wu W J, Chen L G, Sun F R 2007 Appl. Energy 84 39

    [10]

    Wei S H, Chen L G, Sun F R 2009 Appl. Energy 86 1111

    [11]

    Lorenzini G, Biserni C, Rocha L A O 2013 Int. J. Heat Mass Transfer 58 513

    [12]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Int. J. Heat Mass Transfer 91 162

    [13]

    Ghodoossi S, Egrican N 2004 Energy Convers. Mgmt. 45 811

    [14]

    Chen L G, Wu W J, Sun F R 2014 Int. J. Low-Carbon Tech. 9 256

    [15]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 J. Energy Inst. doi: 10.1016/j. joei. 2015.01.016

    [16]

    Rocha L A O, Lorente S, Bejan A 2002 Int. J. Heat Mass Transfer 45 1643

    [17]

    Xiao Q H, Chen L G, Sun F R 2011 Int. J. Therm. Sci. 50 1031

    [18]

    Salimpour M R, Sharifi F, Menbari D 2013 Proc. Inst. Mech. Engng., Part E: J. Process Mech. Engng. 227 231

    [19]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Int. J. Heat Mass Transfer 67 704

    [20]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [21]

    Li Z X, Guo Z Y 2010 Field synergy principle of heat convection optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论(北京: 科学出版社) 第 78-97 页]

    [22]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [23]

    Chen Q, Liang X G, Guo Z Y 2013 Int. J. Heat Mass Transfer 63 65

    [24]

    Cheng X T, Liang X G 2013 J. Therm. Sci. Tech. 8 337

    [25]

    Cheng X T, Liang X G 2014 Chin. Sci. Bull., 59 5309

    [26]

    Chen L G 2014 Sci. China: Tech. Sci. 57 2305

    [27]

    Ji J, Liu T, Zhang X, Guo Z Y 2014 Sci. Found. China 6 446 (in Chinese) [纪军, 刘涛, 张兴, 过增元 2014 中国科学基金 6 446]

    [28]

    Zhu H Y 2007 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [朱宏晔 2007 博士学位论文 (北京: 清华大学) ]

    [29]

    Wang S P, Chen Q L, Zhang B J 2009 Chin. Sci. Bull. 54 3572

    [30]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Acta Phys. Sin. 64 054402 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2015 物理学报 64 054402]

    [31]

    Tao Y B, He Y L, Liu Y K, Tao W Q 2014 Int. J. Heat Mass Transfer 77 695

    [32]

    Jia H, Liu Z C, Liu W, Nakayama A 2014 Int. J. Heat Mass Transfer 73 124

    [33]

    Wang Y F, Chen Q 2015 Energy 85 609

    [34]

    Qian X D, Li Z, Li Z X 2015 Int. J. Heat Mass Transfer 81 252

    [35]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Acta Phys. Sin. 64 034701 (in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2015 物理学报 64 034701]

    [36]

    Hu G J, Cao B Y, Guo Z Y 2011 Chin. Sci. Bull. 56 2974

    [37]

    Cheng X T, Liang X G 2015 Int. J. Heat Mass Transfer 81 167

    [38]

    Wang W H, Cheng X T, Liang X G 2015 Int. J. Heat Mass Transfer 83 536

    [39]

    Cheng X T, Liang X G 2015 Chin. Phys. B 24 060510

    [40]

    Wu Y Q 2015 Chin. Phys. B 24 070506

    [41]

    Wei S H, Chen L G, Sun F R 2008 Sci. China Ser. E: Tech. Sci. 51 1283

    [42]

    Wei S H, Chen L G, Sun F R 2010 Thermal Sci. 14 1075

    [43]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 2400

    [44]

    Chen L G, Wei S H, Sun F R 2011 Int. J. Heat Mass Transfer 54 210

    [45]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 102

    [46]

    Feng H J, Chen L G, Sun F R 2012 Sci. China: Tech. Sci. 55 779

    [47]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 J. Energy Inst. 88 188

    [48]

    Feng H J, Chen L G, Xie Z H, Sun F R 2015 Int. J. Heat Mass Transfer 84 848

    [49]

    Feng H J 2014 Ph. D. Dissertation (Wuhan: Naval University of Engineering) (in Chinese) [冯辉君 2014 博士学位论文 (武汉: 海军工程大学)]

    [50]

    Chen L G, Feng H J, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134401 (in Chinese) [陈林根, 冯辉君, 谢志辉, 孙丰瑞 2013 物理学报 62 134401]

    [51]

    da Silva A K, Bejan A 2006 Int. J. Therm. Sci. 45 860

    [52]

    Fan Z, Zhou X, Luo L, Yuan W 2008 Exp. Therm. Fluid Sci. 33 77

  • [1] Wang Ao, Sheng Yu-Fei, Bao Hua. Recent advances in thermal transport theory of metals. Acta Physica Sinica, 2024, 73(3): 037201. doi: 10.7498/aps.73.20231151
    [2] Hu Min-Li, Fang Fan, Fan Qun-Chao, Fan Zhi-Xiang, Li Hui-Dong, Fu Jia, Xie Feng. Theoretical study on macroscopic thermodynamic properties of NO+ ion system. Acta Physica Sinica, 2023, 72(16): 165101. doi: 10.7498/aps.72.20230541
    [3] Quan Hai-Tao, Dong Hui, Sun Chang-Pu. Theoretical and experiments of mesoscopic statistical thermodynamics. Acta Physica Sinica, 2023, 72(23): 230501. doi: 10.7498/aps.72.20231608
    [4] Jian Jun, Lei Jiao, Fan Qun-Chao, Fan Zhi-Xiang, Ma Jie, Fu Jia, Li Hui-Dong, Xu Yong-Gen. Theoretical study on thermodynamic properties of NO gas. Acta Physica Sinica, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [5] Fan Hang, He Guan-Song, Yang Zhi-Jian, Nie Fu-De, Chen Peng-Wan. Theoretical study of interface thermodynamic properties of 1,3,5-triamino-2,4,6-trinitrobenzene based polymer bonded explosives. Acta Physica Sinica, 2019, 68(10): 106201. doi: 10.7498/aps.68.20190075
    [6] Wang Gang, Xie Zhi-Hui, Fan Xu-Dong, Chen Lin-Gen, Sun Feng-Rui. Comparative studies on constructal optimizations of discrete heat generation components based on entransy dissipation minimization and maximum temperature minimization. Acta Physica Sinica, 2017, 66(20): 204401. doi: 10.7498/aps.66.204401
    [7] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal optimization of complex fin with convective heat transfer based on entransy dissipation rate minimization. Acta Physica Sinica, 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [8] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal optimization of variable cross-section insulation layer of steel rolling reheating furnace wall based on entransy theory. Acta Physica Sinica, 2015, 64(5): 054402. doi: 10.7498/aps.64.054402
    [9] Yang Ai-Bo, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Comparative study on constructal optimizations of rectangular fins heat sink based on entransy dissipation rate minimization and maximum thermal resistance minimization. Acta Physica Sinica, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [10] Cheng Xue-Tao, Liang Xin-Gang. Discussion on the application of entransy theory to heat-work conversion processes. Acta Physica Sinica, 2014, 63(19): 190501. doi: 10.7498/aps.63.190501
    [11] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal entransy dissipation rate minimization the problem of constracting “disc-point” cooling channels. Acta Physica Sinica, 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [12] Chen Lin-Gen, Feng Hui-Jun, Xie Zhi-Hui, Sun Feng-Rui. Constructal entransy dissipation rate minimization of a disc on micro and nanoscales. Acta Physica Sinica, 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [13] Xu Bu-Yi, Chen Jun-Rong, Cai Jing, Li Quan, Zhao Ke-Qing. Theoretical study on the structure,spectra and thermodynamic property of 2-(toluene-4-sulfonylamino)-benzoic. Acta Physica Sinica, 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [14] Wang Hong-Yan, Duan Wen-Shan. Theoretical investigation of properties of soliton in hot dusty plasma with non-thermal ions. Acta Physica Sinica, 2007, 56(7): 3977-3983. doi: 10.7498/aps.56.3977
    [15] Song Hai-Feng, Liu Hai-Feng. Theoretical study of thermodynamic properties of metal Be. Acta Physica Sinica, 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [16] LIU LU-XIN. APPLICATIONS OF THE THEORY OF RELATIVISTIC THERMODYNAMICS TO THE SCHWARZSCHILD MATTER SYSTEM IN THE GRAVITATIONAL FIELD. Acta Physica Sinica, 1997, 46(12): 2300-2304. doi: 10.7498/aps.46.2300
    [17] LI FU-BlN. THE MICROSCOPIC PHENOMENOLOGICAL THEORY OF ANALYSIS FOR THE PROBLEM OF NONEQUILIBRIUM FLUCTUATIONS (Ⅰ)——A NEW THEORY OF EXTENDED IRREVERSIBLE THERMODY-NAMICS AND NONEQUILIBRIUM CORRECTIONS OF THE FLUCTUATION-DISSIPATION EXPRESSIONS FOR THE HEAT FL. Acta Physica Sinica, 1989, 38(9): 1467-1474. doi: 10.7498/aps.38.1467
    [18] XU JI-HAI. THE THEORY OF SUPERCONDUCTIVITY IN CeCu2Si2 AND UBe13 (Ⅱ)——THE CALCULATIONS OF THERMODYNAMIC QUANTITIES. Acta Physica Sinica, 1988, 37(1): 111-118. doi: 10.7498/aps.37.111
    [19] MON SIAN-CHEN, PU FU-CHO. APPLICATION OF THERMODYNAMICAL RETARDED GREEN FUNCTION TO THE THEORY OF LINE WIDTH OF FERROMAGNETIC RESONANCE. Acta Physica Sinica, 1961, 17(5): 214-221. doi: 10.7498/aps.17.214
    [20] Cheng Kai-jia;Li Zhong-zheng. A GENERAL THERMODYNAMICAL THEORY OF INTERNAL FRICTION (II) INTERNAL FRICTION IN ORDERED ANO DISORDERED STATES. Acta Physica Sinica, 1956, 12(4): 281-297. doi: 10.7498/aps.12.281
Metrics
  • Abstract views:  4840
  • PDF Downloads:  152
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2015
  • Accepted Date:  04 October 2015
  • Published Online:  20 January 2016

/

返回文章
返回