Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structures and photoluminescence properties of Se and SeMo2 nanoflakes

Wang Bi-Ben Zhu Ke Wang Qiang

Citation:

Structures and photoluminescence properties of Se and SeMo2 nanoflakes

Wang Bi-Ben, Zhu Ke, Wang Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Se and MoSe2 nanoflakes are prepared in N2 environment by hot filament chemical vapor deposition through using Se and MoO3 powders as the source materials. The structures and compositions of Se and MoSe2 nanoflakes are systemically studied by using field emission scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectroscope, micro-Raman spectroscope, and X-ray photoelectron spectroscope. The results indicate that the mixing of the Se and MoO3 powders directly affects the formations and structures of Se and MoSe2 nanoflakes. When the Se and MoO3 powders are fully mixed, the Se nanoflakes are formed, however the MoSe2 nanoflakes are formed under no mixture of Se and MoO3 powders. This is due to the fact that different reactions of Se and MoO3 powders in gas environment with or without mixing the Se and MoO3 powders are generated. The study of photoluminescence properties indicates that the photoluminescence peaks are generated at about 774, 783 nm and 783, 784 nm for the Se and MoSe2 nanoflakes, respectively, which are different from the photoluminescence properties of monolayer MoSe2 nanosheet. These outcomes can enrich our knowledge of the synthesis and optical properties of two-dimensional Se-based nanomaterials and will contribute to the development of optoelectronic devices of two-dimensional Se-based nanomaterials.
      Corresponding author: Wang Bi-Ben, bibenw@cqut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474325).
    [1]

    Vishwanath S, Liu X, Rouvimov S, CMende P, Azcatl A, McDonnell S, Wallace R M, Feenstra R M, Furdyna J K, Jena D, Xing H G 2015 2D Mater. 2 024007

    [2]

    Lai Z P 2013 Acta Phys. Sin. 62 056801 (in Chinese) [赖占平 2013 物理学报 62 056801]

    [3]

    Ostrikov K, Neyts E C, Meyyappan M 2013 Adv. Phys. 62 113

    [4]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803]

    [5]

    Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, Gendt S D, Sels B F 2010 Nanotechnology 21 435203

    [6]

    Xia J, Huang X, Liu L Z, Wang M, Wang L, Huang B, Zhu D D, Li J J, Gu C Z, Meng X M 2014 Nanoscale 6 8949

    [7]

    Hankare P P, Patil A A, Chate P A, Garadkar K M, Sathe D J, Manikshete A H, Mulla I S 2008 J. Cryst. Growth 311 15

    [8]

    Shaw J C, Zhou H, Chen Y, Weiss N O, Liu Y, Huang Y, Duan X 2014 Nano Res. 7 511

    [9]

    Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E, Tay B K, Ajayan P M 2014 ACS Nano 8 5125

    [10]

    Wang B B, Zhu M K, Ostrikov K, Shao R W, Zheng K 2015 J. Alloys Compd. 647 734

    [11]

    Alparone A 2012 Comput. Theor. Chem. 988 81

    [12]

    Alemn-Vzquez L O, Hernndez-Prez F, Cano-Domnguez J L 2014 Fuel 117 463

    [13]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J 2012 Nano Lett. 12 5576

    [14]

    Sugai S, Ueda T 1982 Phys. Rev. B 26 6554

    [15]

    Tonndorf P, Schmidt R, Bttger P, Zhang X, Brner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Michaelis de Vasconcellos S, Bratschitsch R 2013 Opt. Express 21 4908

    [16]

    Su S H, Hsu W T, Hsu C L, Chen C H, Chiu M H, Lin Y C, Chang W H, Suenaga K, He J H, Li L J 2014 Front. Energy Res. 2 (www.frontiersin.org, doi: 10.3389/fenrg.2014.00027)

    [17]

    Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E 1979 Handbook of X-ray Photoelectron Spectroscopy (USA: Perkin-Elmer Corp., Physical Electronics Division) p92,104

    [18]

    Spevack P A, McIntyre N S 1993 J. Phys. Chem. 97 11020

    [19]

    Prasad K S, Patel H, Patel T, Patel K, Selvaraj K 2013 Coll. Surf. B 103 261

    [20]

    Ohring M 1992 The Materials Science of Thin Films (Boston: Academic Press) p82

    [21]

    Howe J M 1997 Interfaces in Materials (New York: John Wiley Sons, Inc.) p494

    [22]

    Samant M S, Kerkar A S, Bharadwaj S R, Dharwadkar S R 1992 J. Alloys Compd. 187 373

    [23]

    Yang B C, Wang W S 1994 Films Physics and Technology (Chengdo: Electronic Science and Technology Press) p151 (in Chinese) [杨邦朝, 王文生 1994 薄膜物理与技术 (成都: 电子科技大学出版社) 第151页]

    [24]

    Li X L, Li Y D 2003 Chem. Eur. J. 9 2726

    [25]

    Rao Y K 1983 Metallurg. Trans. B 14B 308

    [26]

    Overschelde O V, Guisbiers G 2015 Opt. Laser Technol. 73 156

    [27]

    Han M Y, zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [28]

    Solieman A, Abu-Sehly A A 2010 Physica B 405 1101

    [29]

    Robertson J 1996 Phys. Rev. B 53 16302

  • [1]

    Vishwanath S, Liu X, Rouvimov S, CMende P, Azcatl A, McDonnell S, Wallace R M, Feenstra R M, Furdyna J K, Jena D, Xing H G 2015 2D Mater. 2 024007

    [2]

    Lai Z P 2013 Acta Phys. Sin. 62 056801 (in Chinese) [赖占平 2013 物理学报 62 056801]

    [3]

    Ostrikov K, Neyts E C, Meyyappan M 2013 Adv. Phys. 62 113

    [4]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803]

    [5]

    Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, Gendt S D, Sels B F 2010 Nanotechnology 21 435203

    [6]

    Xia J, Huang X, Liu L Z, Wang M, Wang L, Huang B, Zhu D D, Li J J, Gu C Z, Meng X M 2014 Nanoscale 6 8949

    [7]

    Hankare P P, Patil A A, Chate P A, Garadkar K M, Sathe D J, Manikshete A H, Mulla I S 2008 J. Cryst. Growth 311 15

    [8]

    Shaw J C, Zhou H, Chen Y, Weiss N O, Liu Y, Huang Y, Duan X 2014 Nano Res. 7 511

    [9]

    Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E, Tay B K, Ajayan P M 2014 ACS Nano 8 5125

    [10]

    Wang B B, Zhu M K, Ostrikov K, Shao R W, Zheng K 2015 J. Alloys Compd. 647 734

    [11]

    Alparone A 2012 Comput. Theor. Chem. 988 81

    [12]

    Alemn-Vzquez L O, Hernndez-Prez F, Cano-Domnguez J L 2014 Fuel 117 463

    [13]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J 2012 Nano Lett. 12 5576

    [14]

    Sugai S, Ueda T 1982 Phys. Rev. B 26 6554

    [15]

    Tonndorf P, Schmidt R, Bttger P, Zhang X, Brner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Michaelis de Vasconcellos S, Bratschitsch R 2013 Opt. Express 21 4908

    [16]

    Su S H, Hsu W T, Hsu C L, Chen C H, Chiu M H, Lin Y C, Chang W H, Suenaga K, He J H, Li L J 2014 Front. Energy Res. 2 (www.frontiersin.org, doi: 10.3389/fenrg.2014.00027)

    [17]

    Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E 1979 Handbook of X-ray Photoelectron Spectroscopy (USA: Perkin-Elmer Corp., Physical Electronics Division) p92,104

    [18]

    Spevack P A, McIntyre N S 1993 J. Phys. Chem. 97 11020

    [19]

    Prasad K S, Patel H, Patel T, Patel K, Selvaraj K 2013 Coll. Surf. B 103 261

    [20]

    Ohring M 1992 The Materials Science of Thin Films (Boston: Academic Press) p82

    [21]

    Howe J M 1997 Interfaces in Materials (New York: John Wiley Sons, Inc.) p494

    [22]

    Samant M S, Kerkar A S, Bharadwaj S R, Dharwadkar S R 1992 J. Alloys Compd. 187 373

    [23]

    Yang B C, Wang W S 1994 Films Physics and Technology (Chengdo: Electronic Science and Technology Press) p151 (in Chinese) [杨邦朝, 王文生 1994 薄膜物理与技术 (成都: 电子科技大学出版社) 第151页]

    [24]

    Li X L, Li Y D 2003 Chem. Eur. J. 9 2726

    [25]

    Rao Y K 1983 Metallurg. Trans. B 14B 308

    [26]

    Overschelde O V, Guisbiers G 2015 Opt. Laser Technol. 73 156

    [27]

    Han M Y, zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [28]

    Solieman A, Abu-Sehly A A 2010 Physica B 405 1101

    [29]

    Robertson J 1996 Phys. Rev. B 53 16302

  • [1] Fei Xiang, Zhang Xiu-Mei, Fu Quan-Gui, Cai Zheng-Yang, Nan Hai-Yan, Gu Xiao-Feng, Xiao Shao-Qing. Milimeter-level MoS2 monolayers and WS2-MoS2 heterojunctions grown on molten glass by pre-chemical vapor deposition. Acta Physica Sinica, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [2] Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin. Research progress of stability of luminous lead halide perovskite nanocrystals. Acta Physica Sinica, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [3] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [4] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [5] Wang Zhi-Jun, Liu Hai-Yan, Yang Yong, Jiang Hai-Feng, Duan Ping-Guang, Li Pan-Lai, Yang Zhi-Ping, Guo Qing-Lin. Synthesization and luminescent properties of blue emitting phosphor Ba2Ca(PO4)2:Eu2+. Acta Physica Sinica, 2014, 63(7): 077802. doi: 10.7498/aps.63.077802
    [6] Feng Qiu-Ju, Xu Rui-Zhuo, Guo Hui-Ying, Xu Kun, Li Rong, Tao Peng-Cheng, Liang Hong-Wei, Liu Jia-Yuan, Mei Yi-Ying. Influences of the substrate position on the morphology and characterization of phosphorus doped ZnO nanomaterial. Acta Physica Sinica, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [7] Sun Jia-Yue, Cao Chun, Du Hai-Yan. Hydrothermal controlled synthesis and luminescence properties of NaLa(MoO4)2∶Eu3+ microcrystals. Acta Physica Sinica, 2011, 60(12): 127801. doi: 10.7498/aps.60.127801
    [8] Liu Yuan-Hong, Zhuang Wei-Dong, Gao Wen-Gui, Hu Yun-Sheng, He Tao, He Hua-Qiang. Effect of H3BO3 on preparation and luminescence properties of submicron green-emitting Ca3Sc2Si3O12 ∶Ce phosphor. Acta Physica Sinica, 2010, 59(11): 8200-8204. doi: 10.7498/aps.59.8200
    [9] Xiao Si-Guo, Yang Xiao-Liang, Ding Jian-Wen, Yan Xiao-Hong. Size dependent luminescence properties of Er3+ doped nano-crystalline Y2O3. Acta Physica Sinica, 2009, 58(1): 165-173. doi: 10.7498/aps.58.165
    [10] Yang Zhi-Ping, Liu Yu-Feng, Wang Li-Wei, Yu Quan-Mao, Xiong Zhi-Jun, Xu Xiao-Ling. Luminesce properties of the single white emitting phosphor Eu2+, Mn2+ co-doped Ca2SiO3Cl2. Acta Physica Sinica, 2007, 56(1): 546-550. doi: 10.7498/aps.56.546
    [11] Liu Huang-Qing, Wang Ling-Ling, Zou Bing-Suo. Effect of annealing temperature on luminescence of nanocrystal ZrO2: Eu3+. Acta Physica Sinica, 2007, 56(1): 556-560. doi: 10.7498/aps.56.556
    [12] Han Dao-Li, Zhao Yuan-Li, Zhao Hai-Bo, Song Tian-Fu, Liang Er-Jun. Growth of well-aligned carbon nanotubes arrays by chemical vapor deposition. Acta Physica Sinica, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [13] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [14] Yang Zhi-Ping, Liu Yu-Feng. Preparation and luminescence characteristics of Eu2+ activated Ca3SiO5 green-emitting phosphor. Acta Physica Sinica, 2006, 55(9): 4946-4950. doi: 10.7498/aps.55.4946
    [15] Liu Huang-Qing, Wang Ling-Ling, Qin Wei-Ping. Luminescence of Eu3+ Ions in nanocrystalline zirconia. Acta Physica Sinica, 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [16] Zeng Xiang-Bo, Liao Xian-Bo, Wang Bo, Diao Hong-Wei, Dai Song-Tao, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition. Acta Physica Sinica, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [17] Yan Xiao-Qin, Liu Zu-Qin, Tang Dong-Sheng, Ci Li-Jie, Liu Dong-Fang, Zhou Zhen-Ping, Liang Ying-Xin, Yuan Hua-Jun, Zhou Wei-Ya, Wang Gang. Effects of substrates on silicon oxide nanowires growth by thermal chemical vapor deposition. Acta Physica Sinica, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [18] Wang Yong-Qian, Chen Wei-De, Chen Chang-Yong, Diao Hong-Wei, Zhang Shi-Ben, Xu Yan-Yue, Kong Guang-Lin, Liao Xian-Bo. . Acta Physica Sinica, 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
    [19] Yan Gui-Shen, Li He-Jun, Hao Zhi-Biao. . Acta Physica Sinica, 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
    [20] CHEN XIAO-HUA, WU GUO-TAO, DENG FU-MING, WANG JIAN-XIONG, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, PENG JING-CUI, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
Metrics
  • Abstract views:  5861
  • PDF Downloads:  239
  • Cited By: 0
Publishing process
  • Received Date:  23 September 2015
  • Accepted Date:  12 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回