Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of a partially coherent beam on periodic bottle beam

Zhu Qing-Zhi Shen Dong-Hui Wu Feng-Tie He Xi

Citation:

Effects of a partially coherent beam on periodic bottle beam

Zhu Qing-Zhi, Shen Dong-Hui, Wu Feng-Tie, He Xi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we propose how to generate the periodic bottle beam by using a partially coherent beam. Firstly, a spatially completely coherent beam is transformed into a partially coherent beam by a rotating ground glass. Secondly, after passing through the double-axicon system, the parallel beam is converted into two Bessel beams which have the same optical frequencies but different radial wave vectors. Finally, the partially coherent periodic bottle beam can be generated by two interfering Bessel beams. Based on the interference theory, an analytical expression can be obtained for calculating the distribution of light intensity in the image and spot diagrams in spectral degree of coherence for the optical field with 0.9. By doing this calculation, the proposed optical system can be made to generate a partially coherent periodic bottle beam with the oscillation period of 2.5 mm. Before further investigating the effect of field coherence on the periodic bottle beam, we may also calculate the distribution of light intensity in the images and spot diagrams in the spectral degree at 0.83, 0.7, 0.5 and 0.2, respectively. Results show that the intensity contrast ratio between the dark focus and the surrounding periodic regions can be reduced with the decrease of the spatial coherence degree. In this case, the period of the bottle beam and the central dark focus size will not be affected. We have also designed and carried out an experimental generation of the periodic bottle beam and measured its focusing properties. In the experiment, we can control the coherence in the incident field by controlling the size of the circular aperture located behind the rotating ground-glass disk. When the size of the circular aperture is 0.1 (or 0.2) mm, the value of the coherence degree of the incident optical field is 0.9 (or 0.83). The two different coherence degrees of the partially coherent bottle beam have been measured by CCD. Experimental results show that the obtained bottle beams are of the same period of 2.5 mm. The measured diameters of the two different coherence degrees of the central spots (maximum sizes of the dark spot) are both 15 m. Experimental results also show that the spectral degree of coherence cannot affect the shape and size of the periodic bottle beam except the contrast of it. Therefore, the experimental results agree well with the theoretical results.
      Corresponding author: Wu Feng-Tie, fengtie@hqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178015), the Technological Innovation Platform Projects of Fujian Province, China (Grant No. 2012H2002), and the Technology Key Projects of Quanzhou City, China (Grant No. 2014Z127).
    [1]

    Arlt J, Padgett M J 2000 Opt. Lett. 25 191

    [2]

    Chen C H, Tai P T, Hsieh W F 2004 Appl. Opt. 43 6001

    [3]

    Mondal S K, Pal S S, Kapur P 2012 Opt. Express 20 16180

    [4]

    Taylor M A, Knittel J, Bowen W P 2013 Opt. Express 21 8018

    [5]

    Black B J, Mohanty S K 2012 Opt. Lett. 37 5030

    [6]

    Zhong M C, Wei X B, Zhou J H, Wang Z Q, Li Y M 2013 Nat. Commun. 4 1768

    [7]

    Paterson L, Macdonald M P, Arlt J, Sibbett W, Bryant P E, Dholakia K 2001 Science 292 912

    [8]

    Chen Y H, Yan L, Steinvurzel P, Ramachandran S 2012 Conference on Lasers and Electro-Optics (CLEO) 39 1

    [9]

    Zhang P, Zhang Z, Prakash J, Huang S, Hernandez D, Salazar M, Christodoulides D N, Chen Z G 2011 Opt. Lett. 36 1491

    [10]

    Pu J X, Dong M M, Wang T 2006 Appl. Opt. 45 7553

    [11]

    Du T J, Wang T, Wu F T 2013 Acta Phys. Sin. 62 134103 (in Chinese) [杜团结, 王涛, 吴逢铁 2013 物理学报 62 134103]

    [12]

    Du T J, Wang T, Wu F T 2014 Opt. Commun. 317 24

    [13]

    Mcleod J H 1954 J. Opt. Soc. Am. 44 592

    [14]

    Wu F T, Zeng X H 2008 Acta Opt. Sin. 28 174 (in Chinese) [吴逢铁, 曾夏辉2008 光学学报 28 174]

    [15]

    Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛, 蒲继雄 2007 物理学报 56 6754]

    [16]

    Wu J 1990 J. Mod. Opt. 37 671

    [17]

    Born M, Wolf E(translated by Yang J S) 2009 Principle of Optics (Beijing: Publishing House of Electronics Industry) pp466-469, 474-494 (in Chinese) [玻恩, 沃尔夫 著 (杨葭孙 译) 2009 光学原理 (北京: 电子工业出版社) 第466469和474494页]

    [18]

    He X, Wu F T, Li P, Chen Z Y 2014 Sci. Sin.: Phys. Mech. Astron. 44 705 (in Chinese) [何西, 吴逢铁, 李攀, 陈姿言 2014 中国科学: 物理学 力学 天文学 44 705]

    [19]

    L B D 2003 Laser Optics: Beam Characterization, Propagation and Transformation, Resonator Technology and Physics (Beijing: Higher Education Press) pp203-205 (in Chinese) [吕百达 2003 激光光学: 光束描述、传输变换与光光腔技术物理 (北京: 高等教育出版社) 第203205页]

  • [1]

    Arlt J, Padgett M J 2000 Opt. Lett. 25 191

    [2]

    Chen C H, Tai P T, Hsieh W F 2004 Appl. Opt. 43 6001

    [3]

    Mondal S K, Pal S S, Kapur P 2012 Opt. Express 20 16180

    [4]

    Taylor M A, Knittel J, Bowen W P 2013 Opt. Express 21 8018

    [5]

    Black B J, Mohanty S K 2012 Opt. Lett. 37 5030

    [6]

    Zhong M C, Wei X B, Zhou J H, Wang Z Q, Li Y M 2013 Nat. Commun. 4 1768

    [7]

    Paterson L, Macdonald M P, Arlt J, Sibbett W, Bryant P E, Dholakia K 2001 Science 292 912

    [8]

    Chen Y H, Yan L, Steinvurzel P, Ramachandran S 2012 Conference on Lasers and Electro-Optics (CLEO) 39 1

    [9]

    Zhang P, Zhang Z, Prakash J, Huang S, Hernandez D, Salazar M, Christodoulides D N, Chen Z G 2011 Opt. Lett. 36 1491

    [10]

    Pu J X, Dong M M, Wang T 2006 Appl. Opt. 45 7553

    [11]

    Du T J, Wang T, Wu F T 2013 Acta Phys. Sin. 62 134103 (in Chinese) [杜团结, 王涛, 吴逢铁 2013 物理学报 62 134103]

    [12]

    Du T J, Wang T, Wu F T 2014 Opt. Commun. 317 24

    [13]

    Mcleod J H 1954 J. Opt. Soc. Am. 44 592

    [14]

    Wu F T, Zeng X H 2008 Acta Opt. Sin. 28 174 (in Chinese) [吴逢铁, 曾夏辉2008 光学学报 28 174]

    [15]

    Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛, 蒲继雄 2007 物理学报 56 6754]

    [16]

    Wu J 1990 J. Mod. Opt. 37 671

    [17]

    Born M, Wolf E(translated by Yang J S) 2009 Principle of Optics (Beijing: Publishing House of Electronics Industry) pp466-469, 474-494 (in Chinese) [玻恩, 沃尔夫 著 (杨葭孙 译) 2009 光学原理 (北京: 电子工业出版社) 第466469和474494页]

    [18]

    He X, Wu F T, Li P, Chen Z Y 2014 Sci. Sin.: Phys. Mech. Astron. 44 705 (in Chinese) [何西, 吴逢铁, 李攀, 陈姿言 2014 中国科学: 物理学 力学 天文学 44 705]

    [19]

    L B D 2003 Laser Optics: Beam Characterization, Propagation and Transformation, Resonator Technology and Physics (Beijing: Higher Education Press) pp203-205 (in Chinese) [吕百达 2003 激光光学: 光束描述、传输变换与光光腔技术物理 (北京: 高等教育出版社) 第203205页]

  • [1] Xu Hua-Feng, Zhang Xing-Yu, Wang Ren-Jie. Propagation properties of partially coherent vector beam with multiple off-axis vortex phases. Acta Physica Sinica, 2024, 73(3): 034201. doi: 10.7498/aps.73.20231484
    [2] Ren Rui-Min, Yin Ya-Ling, Wang Zhi-Zhang, Guo Chao-Xiu, Yin Jian-Ping. Theoretical research on the generation of a submicron localized hollow beam and its applications in the trapping and cooling of a single atom. Acta Physica Sinica, 2016, 65(11): 114101. doi: 10.7498/aps.65.114101
    [3] Zhu Qing-Zhi, Wu Feng-Tie, Hu Run, Feng Cong. Precise controll of hollow beam size. Acta Physica Sinica, 2016, 65(18): 184101. doi: 10.7498/aps.65.184101
    [4] Zhang Lei, Chen Zi-Yang, Cui Sheng-Wei, Liu Ji-Lin, Pu Ji-Xiong. Propagation of non-uniform partially coherent beams in free space. Acta Physica Sinica, 2015, 64(3): 034205. doi: 10.7498/aps.64.034205
    [5] He Xi, Du Tuan-Jie, Wu Feng-Tie. Optical bottle beam generated by a new type of light emitting diode lens. Acta Physica Sinica, 2014, 63(7): 074201. doi: 10.7498/aps.63.074201
    [6] Li Dong, Wu Feng-Tie, Xie Xiao-Xia. A novel method of generating qausi-non-diffracting Mahtieu beam based on axicon. Acta Physica Sinica, 2014, 63(15): 152401. doi: 10.7498/aps.63.152401
    [7] Fan Dan-Dan, Wu Feng-Tie, Cheng Zhi-Ming, Zhu Jian-Qiang. Reconstruction of incoherent source Bessel beam. Acta Physica Sinica, 2013, 62(10): 104219. doi: 10.7498/aps.62.104219
    [8] Ma Yuan, Ji Xiao-Ling. Average intensity of tilted and off-axis Gaussian Schell-model beams propagating through a cat-eye optical lens in atmospheric turbulence. Acta Physica Sinica, 2013, 62(9): 094214. doi: 10.7498/aps.62.094214
    [9] Du Tuan-Jie, Wang Tao, Wu Feng-Tie. Line focusing characteristics of axicon illuminated by non-diffracting Bessel beam. Acta Physica Sinica, 2013, 62(13): 134103. doi: 10.7498/aps.62.134103
    [10] Cheng Zhi-Ming, Wu Feng-Tie, Zhang Qian-An, Zheng Wei-Tao. New method of generating self-imaged optical bottle beams and particles captured. Acta Physica Sinica, 2012, 61(9): 094201. doi: 10.7498/aps.61.094201
    [11] Zheng Wei-Tao, Wu Feng-Tie, Zhang Qian-An, Cheng Zhi-Ming. A new technique for generating non-diffracting beam with long propagation distance using two axicons. Acta Physica Sinica, 2012, 61(14): 144201. doi: 10.7498/aps.61.144201
    [12] Zhang Qian-An, Wu Feng-Tie, Zheng Wei-Tao. Eliminating the center spot of bottle beam generated by axicon-lens system. Acta Physica Sinica, 2012, 61(3): 034205. doi: 10.7498/aps.61.034205
    [13] Cheng Zhi-Ming, Wu Feng-Tie, Fang Xiang, Fan Dan-Dan, Zhu Jian-Qiang. Multi-bottle beam generated by vaulted axicon. Acta Physica Sinica, 2012, 61(21): 214201. doi: 10.7498/aps.61.214201
    [14] Zhang Qian-An, Wu Feng-Tie, Zheng Wei-Tao, Ma Liang. Bottle beam generated by novel axicon. Acta Physica Sinica, 2011, 60(9): 094201. doi: 10.7498/aps.60.094201
    [15] Lu Wen-He, Wu Feng-Tie, Ma Bao-Tian. A bottle beam generated by a ring obstacle-axicon. Acta Physica Sinica, 2010, 59(9): 6101-6105. doi: 10.7498/aps.59.6101
    [16] Ma Liang, Wu Feng-Tie. A bottle beam generated by a step refractive index axicon. Acta Physica Sinica, 2010, 59(9): 6096-6100. doi: 10.7498/aps.59.6096
    [17] Wu Feng-Tie, Jiang Xin-Guang, Liu Bin, Qiu Zhen-Xing. Single bottle beam generated by a gradient axicon. Acta Physica Sinica, 2009, 58(4): 2410-2414. doi: 10.7498/aps.58.2410
    [18] Wu Feng-Tie, Jiang Xin-Guang, Liu Bin, Qiu Zhen-Xing. Geometric optics analysis on self-reconstruction of the nondiffracting beam generated from an axicon. Acta Physica Sinica, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [19] Li Jian-Long, Lü Bai-Da. Optimized design of phase plates for shaping partially coherent beams based on the adaptive genetic algorithm. Acta Physica Sinica, 2008, 57(5): 3006-3010. doi: 10.7498/aps.57.3006
    [20] Wang Tao, Pu Ji-Xiong. Propagation of Bessel-correlated partially coherent hollow beams in the turbulent atmosphere. Acta Physica Sinica, 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
Metrics
  • Abstract views:  5042
  • PDF Downloads:  254
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2015
  • Accepted Date:  30 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回